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Semi-abundant Semigroups with Quasi-Ehresmann Transversals

Shoufeng Wanga

aSchool of Mathematics, Yunnan Normal University, Kunming, 650500, P. R. China

Abstract. Chen (Communications in Algebra 27(2), 4275-4288, 1999) introduced and investigated ortho-
dox transversals of regular semigroups. In this paper, we initiate the investigation of quasi-Ehresmann
transversals of semi-abundant semigroups which are generalizations of orthodox transversals of regu-
lar semigroups. Some interesting properties associated with quasi-Ehresmann transversals are estab-
lished. Moreover, a structure theorem of semi-abundant semigroups with generalized bi-ideal strong
quasi-Ehresmann transversals is obtained. Our results generalize and enrich Chen’s results.

1. Introduction

The concept of inverse transversals was introduced by Blyth-McFadden [3]. From then on, inverse
transversals have been extensively investigated and generalized by many authors (for example, see [1]-[7],
[14]-[15] and [18]). Since orthodox semigroups can be regarded as generalizations of inverse semigroups,
in 1999, Chen [4] generalized inverse transversals to orthodox transversals in the class of regular semigroups
and gave a construction theorem for a kind of regular semigroups with orthodox transversals. Furthermore,
Chen-Guo [6] explored some interesting properties associated with orthodox transversals. Most recently,
Kong [14, 15] also investigated orthodox transversals and obtained some new results.

On the other hand, semi-abundant semigroups are generalized regular semigroups and have been
studied by many authors, for example, see the texts [8]-[12] and [16]-[17]. In particular, Ehbal-El-Qallali
[17] investigated a class of semi-abundant semigroups whose idempotents form a subsemigroup, El-Qallali-
Fountain-Gould [8] and Gomes-Gould [10] studied some classes of semi-abundant semigroups by so called
“fundamental approaches” and Lawson [16] considered some kinds of semi-abundant semigroups by “category
approaches”. Fountain-Gomes-Gould [9] investigated this class of semigroups from the viewpoint of variety,
and Gould [11] gave a survey of investigations of special semi-abundant semigroups, namely restriction
semigroups and Ehresmann semigroups. Moreover, He-Shum-Wang [12] considered the representations of
quasi-Ehresmann semigroups.

In this paper, we initiate the study of semi-abundant semigroups by using the idea of “transversals” which
was firstly used to the study of regular semigroups by Blyth and McFadden in [3]. Specifically, we introduce
the concept of quasi-Ehresmann transversals for semi-abundant semigroups, which is a generalization of
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the concept of orthodox transversals of regular semigroups, and give some properties associated with quasi-
Ehresmann transversals. Furthermore, a structure theorem of semi-abundant semigroups with generalized
bi-ideal strong quasi-Ehresmann transversals is obtained. Our results generalize and enrich the main results
associated with orthodox transversals obtained in the texts Chen [4] and Chen-Guo [6].

2. Preliminaries

Let S be a semigroup. We use E(S) to denote the set of idempotents of S. For x, a ∈ S, if axa = a and
xax = x, then a is called an inverse of x in S. We also let

V(x) = {a ∈ S|axa = a, xax = x}.

An element x in S is called regular if V(x) , ∅. A semigroup S is regular if every element in S is regular. A
semigroup is regular if and only if eachL-class (orR-class) of S contains idempotents. A regular semigroup
S is called orthodox if E(S) is a subsemigroup of S, an orthodox semigroup S is inverse if E(S) is a commutative
subsemigroup of S. ForK ∈ {L,R} and x ∈ S, we use Kx to denote theK -class of S containing x. On Green’s
relations, we also need the following results.

Lemma 2.1 ([13]). For any semigroup S, the following statements are true:

(1) If e, f ∈ E(S) and eD f in S, then each element a of Re ∩ L f has a unique inverse a′ in R f ∩ Le such that aa′ = e
and a′a = f .

(2) If a, b ∈ S, then ab ∈ Ra ∩ Lb if and only if La ∩ Rb contains an idempotent.

Let S be a semigroup, S◦ a subsemigroup of S, a ∈ S and A ⊆ S. Throughout this paper, we denote

VS◦ (a) = V(a) ∩ S◦,VS◦ (A) =
⋃
a∈A

VS◦ (a).

Let S be a regular semigroup and S◦ a subsemigroup of S. According to Blyth-McFadden [3], S◦ is called
an inverse transversal if |VS◦ (a)| = 1 for all a ∈ S. On the other hand, from Chen [4], a subsemigroup S◦ of a
regular semigroup S is called an orthodox transversal of S if

(i) VS◦ (a) , ∅ for all a ∈ S;

(ii) {a, b} ∩ S◦ , ∅ implies that VS◦ (b)VS◦ (a) ⊆ VS◦ (ab) for all a, b ∈ S.

On orthodox transversals, we need the following results.

Lemma 2.2 ([6]). Let S be a regular semigroup and S◦ a subsemigroup of S such that VS◦ (a) , ∅ for all a ∈ S. Denote

I = {aa◦|a◦ ∈ VS◦ (a), a ∈ S},Λ = {a◦a|a◦ ∈ VS◦ (a), a ∈ S}.

(1) S is an orthodox semigroup if and only if VS◦ (a)VS◦ (b) ⊆ VS◦ (ba) for all a, b ∈ S.

(2) S◦ is an orthodox transversal of S if and only if

IE(S◦) ⊆ I,E(S◦)Λ ⊆ Λ,E(S◦)I ⊆ E(S),ΛE(S◦) ⊆ E(S).

(3) If S◦ is an orthodox transversal of S, then the subsemigroup generated by I (resp. Λ) is a subband of S.

Let S be a semigroup and a, b ∈ S. That aR̃b means that ea = a if and only if eb = b for all e ∈ E(S). The
relation L̃ can be defined dually. Denote H̃ = L̃ ∩ R̃. In general, L̃ is not a right congruence and R̃ is not
a left congruence. Obviously, L ⊆ L̃ and R ⊆ R̃. If a, b ∈ Re1S, the set of regular elements of S, then aR̃b
(resp. aL̃b) if and only if aRb (resp. aLb). On the relation R̃ on a semigroup S, we have the following easy
but useful result.
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Lemma 2.3. Let S be a semigroup and a ∈ S, e ∈ E(S). Then the following statements are equivalent:

(1) eR̃a;

(2) ea = a and for all f ∈ E(S), f a = a implies f e = e.

Now, we state the following fundamental concept of our paper.

Definition 2.4. A semigroup S is called semi-abundant if the following conditions hold:

(i) Each L̃-class and each R̃-class of S contains idempotents.

(ii) L̃ is a right congruence and R̃ is a left congruence on S, respectively.

A semi-abundant semigroup S is quasi-Ehresmann if its idempotents form a subsemigroup of S. Obvi-
ously, regular semigroups are semi-abundant, and orthodox semigroups are quasi-Ehresmann semigroups.
Furthermore, a semi-abundant semigroup S is quasi-Ehresmann if and only if Re1S is an orthodox subsemi-
group of S. Let S be a semi-abundant semigroup. ForK ∈ {L,R} and a ∈ S, we use K̃a to denote the K̃ -class
of S containing a.

Notation 2.5. Let S be a quasi-Ehresmann semigroup. We use a† and a∗ to denote the typical idempotents
contained in R̃a and L̃a for a ∈ S, respectively.

Let S be a quasi-Ehresmann semigroup. Denote the D-class of E(S) containing the element e ∈E(S) by
E(e). Define the binary relation δ on S as follows:

aδb if and only if b = ea f for some e ∈ E(a†) and f ∈ E(a∗).

On the relation δ on a quasi-Ehresmann semigroup S, we have the results below.

Lemma 2.6. Let S be a quasi-Ehresmann semigroup, a, b ∈ S and b = ea f for some e ∈ E(a†) and f ∈ E(a∗). Then

(1) E(a†) = E(b†) and E(a∗) = E(b∗) for any b† and b∗.

(2) δ is an equivalent relation on S.

(3) eR̃bL̃ f .

(4) H̃ ∩ δ is the identity relation on S.

Proof. (1) By the hypothesis, we have E(e) = E(a†) and E( f ) = E(a∗). Furthermore, we also obtain eb = b and
b f = b. Since bR̃b† and bL̃b∗, it follows that eb† = b† and b∗ f = b∗. This implies that E(b†) ≤ E(e) = E(a†) and
E(b∗) ≤ E( f ) = E(a∗). On the other hand, we have

a = a†aa∗ = a†ea†aa∗ f a∗ = a†(ea†aa∗ f )a∗ = a†(ea f )a∗ = a†ba∗ = (a†b†)b(b∗a∗).

Observe that a†b† ∈ E(b†) and b∗a∗ ∈ E(b∗), by the above discussions, it follows that E(a†) ≤ E(a†b†) = E(b†)
and E(a∗) ≤ E(b∗a∗) = E(b∗). Thus, E(a†) = E(b†) and E(a∗) = E(b∗).

(2) Since a = a†aa∗ for all a ∈ S, δ is reflexive. Moreover, by the proof of item (1), it follows that δ is
symmetric. Finally, let aδb, bδc and

b = ea f , c = 1bh, e ∈ E(a†), f ∈ E(a∗), 1 ∈ E(b†), h ∈ E(b∗).

By item (1), we have E(a†) = E(b†),E(a∗) = E(b∗). This implies that c = (1e)a( f h) and 1e ∈ E(a†), f h ∈ E(a∗)
whence aδc. Therefore, δ is transitive.

(3) Let k ∈ E(S) and kb = b. Then kea f = ea f . This implies that

kea = keaa∗ = keaa∗ f a∗ = kea f a∗ = ea f a∗ = eaa∗ f a∗ = eaa∗ = ea.
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Since aR̃a† and R̃ is a left congruence, we have eaR̃ea† and so kea† = ea†. Thus,

ke = kea†e = ea†e = e

by the fact that e ∈ E(a†). By Lemma 2.3, eR̃b. Dually, bL̃ f .
(4) If a, b ∈ S and a(H̃ ∩ δ)b, then b = ea f for some e ∈ E(a†) and f ∈ E(a∗). This implies that

b = a†ba∗ = a†ea f a∗ = a†ea†aa∗ f a∗ = a†aa∗ = a,

as required.

A semi-abundant subsemigroup U of a semi-abundant semigroup S is called a ∼-subsemigroup of S if

L̃(U) = L̃(S) ∩ (U ×U), R̃(U) = R̃(S) ∩ (U ×U).

It is easy to see that a semi-abundant subsemigroup U of a semi-abundant semigroup S is a∼-subsemigroup
if and only if there exist e, f ∈ E(U) such that eL̃x and f R̃x in S for all x ∈ U.

Now, let S be a semi-abundant semigroup and S◦ a quasi-Ehresmann ∼-subsemigroup of S. For any
x ∈ S, denote

ΩS◦ (x) = {(e, x, f ) ∈ E(S) × S◦ × E(S)|x = ex f , eLx†, fRx∗ for some x†, x∗ ∈ E(S◦)}

and
ΓS◦ (x) = {x|(e, x, f ) ∈ ΩS◦ (x)}, IS◦ (x) = {e|(e, x, f ) ∈ ΩS◦ (x)},

ΛS◦ (x) = { f |(e, x, f ) ∈ ΩS◦ (x)}, IS◦ =
⋃
x∈S

IS◦ (x),ΛS◦ =
⋃
x∈S

ΛS◦ (x).

For the sake of simplicity, if no confusion, we shall use Ωx,Γx, Ix,Λx, I and Λ to denote ΩS◦ (x),ΓS◦ (x), IS◦ (x),ΛS◦ (x), IS◦

and ΛS◦ , respectively.

Lemma 2.7. Let S be a semi-abundant semigroup and S◦ a quasi-Ehresmann ∼-subsemigroup of S.

(1) I = {e ∈ E|(∃e◦ ∈ E(S◦))eLe◦},Λ = { f ∈ E|(∃ f ◦ ∈ E(S◦)) fR f ◦};

(2) I ∩Λ = E(S◦), IE(S◦) ∪ E(S◦)Λ ⊆ Re1S.

Proof. (1) Let e ∈ I. Then, there exist x ∈ S, x̄ ∈ S◦ and f ∈ E(S) such that (e, x̄, f ) ∈ Ωx. Thus, eLx̄† for some
x̄† ∈ E(S◦). Conversely, if e ∈ E(S) and eLe◦ ∈ E(S◦), then (e, e◦, e◦) ∈ Ωe, this shows that e ∈ I. A similar
argument holds for Λ.

(2) By (1), E(S◦) ⊆ I ∩Λ. If e ∈ I ∩Λ, again by (1), there exist e◦, e∗ ∈ E(S◦) such that e◦LeRe∗, which leads
to e = e∗e◦ ∈ E(S◦) by Lemma 2.1 (2). Let e ∈ I and f ◦ ∈ E(S◦). Then, there exists e◦ ∈ E(S◦) such that eLe◦.
Hence, e f ◦Le◦ f ◦ ∈ E(S◦). This implies that IE(S◦) ⊆ Re1S. Dually, E(S◦)Λ ⊆ Re1S.

In the following three lemmas, we always assume that S is a semi-abundant semigroup and S◦ is a
quasi-Ehresmann ∼-subsemigroup of S.

Lemma 2.8. If x ∈ S, (e, x̄, f ) ∈ Ωx and eLx̄†, fRx̄∗ for some x̄† and x̄∗ in E(S◦), then x̄ = x̄†xx̄∗ and eR̃xL̃ f . In
particular, if x ∈ Re1S, we have eRxL f .

Proof. By hypothesis, x = ex̄ f . This shows that ex = x. Now, let 1 ∈ E(S) and 1x = x. Then 1ex̄ f = ex̄ f
whence

1ex̄ = 1ex̄x̄∗ = 1ex̄ f x̄∗ = ex̄ f x̄∗ = ex̄x̄∗ = ex̄.

Since x̄R̃x̄† and R̃ is a left congruence on S, it follows that ex̄R̃ex̄† = e. In view of the fact that 1ex̄ = ex̄, we have
1e = e. By Lemma 2.3, eR̃x. Dually, we have xL̃ f . Furthermore, we have x̄†xx̄∗ = x̄†ex̄ f x̄∗ = x̄†x̄x̄∗ = x̄.
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Lemma 2.9. If x, y ∈ S◦ and z ∈ S such that xL̃zR̃y and Γz , ∅. Then z ∈ S◦. In particular, if xH̃z,Γz , ∅ and
x ∈ S◦, then z ∈ S◦.

Proof. Let x∗L̃xL̃zR̃yR̃y† for some x∗, y† ∈ E(S◦). Let (e, z̄, f ) ∈ Ωz and z̄∗R f for some z̄∗ in E(S◦). Then, by
Lemma 2.8, f L̃z . This implies that z̄∗R fLx∗. By Lemma 2.1 (2), we have z̄∗Lx∗z̄∗Rx∗. Since z̄∗x∗, x∗z̄∗ ∈ E(S◦)
and f ∈ E(S), by Lemma 2.1 (2) again, fH z̄∗x∗ and so f = z̄∗x∗ ∈ S◦. Dually, e ∈ S◦. Hence, z = ez̄ f ∈ S◦.

Lemma 2.10. For any x ∈ S and x̄ ∈ Γx, x ∈ Re1S if and only if x̄ ∈ Re1S◦. In this case, Ix = {xx◦|x◦ ∈ VS◦ (x)},Λx =
{x◦x|x◦ ∈ VS◦ (x)} and Γx = VS◦ (VS◦ (x)).

Proof. Let x ∈ Re1S, (e, x̄, f ) ∈ Ωx and eLx̄†, fRx̄∗ for some x̄†, x̄∗ ∈ E(S◦). Then, by Lemma 2.8, fLxRe
and x̄ = x̄†xx̄∗. This deduces that there exist x′ ∈ V(x) and x′′ ∈ V(x′) such that xx′ = e, x′x = f and
x′x′′ = x̄∗, x′′x′ = x̄† from Lemma 2.1 (1). Moreover, by Lemma 2.1 (2), we have the following egg-box
diagram:

x = ex̄ f e xx̄∗, ex̄
f x′ x̄∗

x̄† x̄ = x̄†xx̄∗, x′′
.

Observe that x = xx′x′′x′x = ex′′ f , it follows that

x̄ = x̄†xx̄∗ = x̄†ex′′ f x̄∗ = x̄†x′′x̄∗ = x′′.

Since x̄∗Rx′Lx̄† and x̄∗, x̄† ∈ S◦, it follows that x′ ∈ S◦ by Lemma 2.9. This implies that x′ ∈ VS◦ (x̄) and so
x̄ ∈ Re1S◦. Conversely, let x̄ ∈ Re1S◦. By very similar method, we can see that x ∈ Re1S.

On the other hand, by the discussions above, for all x ∈ Re1S and (e, x̄, f ) ∈ Ωx, we have e = xx′ and
f = x′x for some x′ ∈ VS◦ (x) ∩ VS◦ (x̄). This implies that

Ix ⊆ {xx′|x′ ∈ VS◦ (x)},Λx ⊆ {x′x|x′ ∈ VS◦ (x)},Γx ⊆ VS◦ (VS◦ (x))

for all x ∈ Re1S.
Now, let x ∈ Re1S, x′ ∈ VS◦ (x) and x′′ ∈ VS◦ (x′). Since

xx′Lx′′x′R̃x′′, x′xRx′x′′L̃x′′, x = (xx′)x′′(x′x), x′′x′, x′x′′ ∈ E(S◦),

it follows that (xx′, x′′, x′x) ∈ Ωx, whence xx′ ∈ Ix, x′x ∈ Λx and x′′ ∈ Γx. Therefore,

{xx′|x′ ∈ VS◦ (x)} ⊆ Ix, {x′x|x′ ∈ VS◦ (x)} ⊆ Λx,VS◦ (VS◦ (x)) ⊆ Γx.

Thus, the three equalities in this lemma hold.

3. Quasi-Ehresmann Transversals

This section will explore some properties of semi-abundant semigroups with quasi-Ehresmann transver-
sals. We first give the following concept, which is inspired by Lemma 2.2 (2) and Lemma 2.10.

Definition 3.1. Let S be a semi-abundant semigroup and S◦ a quasi-Ehresmann ∼-subsemigroup of S. Then S◦ is
called a quasi-Ehresmann transversal of S if the following conditions hold:

(i) Γx , ∅ for all x ∈ S;

(ii) is ∈ I and “si ∈ Re1S⇒ si ∈ E(S)” for all i ∈ I and s ∈ E(S◦);

(iii) sλ ∈ Λ and “λs ∈ Re1S⇒ λs ∈ E(S)” for all λ ∈ Λ and s ∈ E(S◦).

We first observe that quasi-Ehresmann transversals of semi-abundant semigroups are indeed general-
izations of orthodox transversals of regular semigroups.
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Theorem 3.2. Let S be a regular semigroup and S◦ a subsemigroup of S. Then S◦ is an orthodox transversal of S if
and only if S◦ is a quasi-Ehresmann transversal of S.

Proof. Let S◦ be an orthodox transversal of S. Then S◦ is an orthodox subsemigroup of S and certainly a
quasi-Ehresmann ∼-subsemigroup of S. Observe that (xx′, x′′, x′x) ∈ Ωx for every x ∈ S, x′ ∈ VS◦ (x) and
x′′ ∈ VS◦ (x′). This shows that Γx , ∅ for any x ∈ S, and so the condition (i) in Definition 3.1 holds. On the
other hand, by Lemma 2.10, we have

I = {xx′|x′ ∈ VS◦ (x), x ∈ S},Λ = {x′x|x′ ∈ VS◦ (x), x ∈ S}.

By Lemma 2.2 (2), the conditions (ii) and (iii) in Definition 3.1 are satisfied, Thus, S◦ is a quasi-Ehresmann
transversal of S.

Conversely, let S◦ be a quasi-Ehresmann transversal of S. By Lemma 2.10 again,

Ix = {xx′|x′ ∈ VS◦ (x)},Λx = {x′x|x′ ∈ VS◦ (x)},Γx = VS◦ (VS◦ (x))

for all x ∈ Re1S. Observe that S is regular, it follows that S◦ is an orthodox transversal of S from Definition
3.1 and Lemma 2.2 (2).

In the remainder of this section, we always assume that S is a semi-abundant semigroup with a quasi-
Ehresmann transversal S◦. In the sequel, we characterize the relations L̃ and R̃ on S.

Theorem 3.3. Let x, y ∈ S.

(1) xR̃y if and only if Ix = Iy;

(2) xL̃y if and only if Λx = Λy.

Proof. (1) Assume that Ix = Iy and e ∈ Ix = Iy. By Lemma 2.8, we have xR̃eR̃y and so xR̃y. Now, let xR̃y,
(e, x̄, f ) ∈ Ωx and (1, ȳ, h) ∈ Ωy. Then eLx̄†, fRx̄∗ and 1Lȳ†, hRȳ∗ for some x̄†, x̄∗ and ȳ†, ȳ∗ in E(S◦). By Lemma
2.8, eR̃xR̃yR̃1 and so eR1. Then, by Definition 3.1 (ii) and Lemma 2.1 (2), we have the following graph:

e = 1x̄† ∈ E(S) 1 = eȳ† ∈ E(S)
x̄† x̄† ȳ† = x̄†1 ∈ E(S)

ȳ†x̄† = ȳ†e ∈ E(S) ȳ†
.

Hence,
y = 1ȳh = (eȳ†)ȳh = e(ȳ† ȳ)h = eȳh = (ex̄†)ȳh = e(x̄† ȳ)h.

We assert that x̄†R̃x̄† ȳL̃ȳ∗. In fact, let m ∈ E(S) and mx̄† ȳ = x̄† ȳ. Observe that ȳR̃ȳ† and R̃ is a left congruence
on S, it follows that x̄† ȳR̃x̄† ȳ†. By Lemma 2.3, we have mx̄† ȳ† = x̄† ȳ† whence mx̄† = mx̄† ȳ†x̄† = x̄† ȳ†x̄† = x̄†.
Observe that x̄†(x̄† ȳ) = x̄† ȳ, it follows that x̄†R̃x̄† ȳ by Lemma 2.3 again. On the other hand, if n ∈ E(S) and
x̄† ȳ = x̄† ȳn, then

ȳ = ȳ†x̄†(ȳ† ȳ) = ȳ†x̄†(ȳ† ȳ)n = ȳn.

By ȳL̃ȳ∗ and the dual of Lemma 2.3, we have ȳ∗ = ȳ∗n. Observe that x̄† ȳȳ∗ = x̄† ȳ, by the dual of Lemma 2.3
again, x̄† ȳL̃ȳ∗. By the above discussions, we have eLx̄†R̃x̄† ȳ and x̄† ȳL̃ȳ∗Rh. This implies that (e, x̄† ȳ, h) ∈ Ωy
and so e ∈ Iy. Hence, Ix ⊆ Iy. Dually, Iy ⊆ Ix.

(2) The is the dual of (1).

Now, we investigate some properties of Γx for x ∈ S.

Theorem 3.4. Let x ∈ S and (e, x, f ) ∈ Ωx.

(1) Γx = {y ∈ S◦|yδx}.

(2) Γx1 = Γx2 if and only if Γx1 ∩ Γx2 , ∅ for all x1, x2 ∈ S.
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(3) Γx ∩ E(S◦) , ∅ implies that Γx ⊆ E(S◦) and VS◦ (x) ⊆ E(S◦).

Proof. (1) Let (e1, y, f1) ∈ Ωx. By Lemma 2.8, we can let

x̄†LeRe1Lȳ†, x̄∗R fL f1Rȳ∗

for some x̄†, ȳ†, x̄∗ and ȳ∗ in E(S◦). In view of Lemma 2.1, x̄†e1Le1 and f1x̄∗Lx̄∗.

e e1

x† x†e1

y†x̄† y†
f x∗ f y∗

f1 f1x∗ y∗

By Definition 3.1 (ii),(iii), we can obtain that x̄†e1, f1x̄∗ ∈ E(S). Again by Lemma 2.1, x̄†e1 = x̄† ȳ† and
f1x̄∗ = ȳ∗x̄∗. Thus, by Lemma 2.8,

x̄ = x̄†xx̄∗ = x̄†e1 ȳ f1x̄∗ = x̄† ȳ† ȳȳ∗x̄∗ = x̄† · ȳ · x̄∗,

where x̄† ∈ E(ȳ†) and x̄∗ ∈ E(ȳ∗). This implies that x̄δȳ.
On the other hand, if y ∈ S◦, yδx and eLx̄† for some x̄† in E(S◦), then there exist i ∈ E(y†), λ ∈ E(y∗)

such that x = iyλ for some (all) y† and y∗ in E(S◦) (Notice that i, λ ∈ E(S◦)). By Lemma 2.6, E(x†) = E(y†).
According to Lemma 2.1 (1), we have

e eiy† ei
x† x†y†

y†x† y† y†i
iy†x† iy† i

.

Since e ∈ I and iȳ† ∈ E(S◦), eiȳ† ∈ I ⊆ E(S) by Definition 3.1 (ii). Thus, eiy†Ly†. Dually, we can obtain
y∗λ f ∈ E(S) and y∗Ry∗λ f . Observe that

x = ex̄ f = eiyλ f = (eiy†)y(y∗λ f ),

(eiy†, y, y∗λ f ) ∈ Ωx and y ∈ Γx.
(2) This is a direct consequence of item (1) and Lemma 2.6 (2).
(3) Let x̄ ∈ Γx and e◦ ∈ Γx ∩ E(S◦). Then, e◦δx̄ by (1). Hence, there exist k, l ∈ E(e◦) such that x̄ = ke◦l,

which implies that x̄ ∈ E(S◦). On the other hand, by Lemma 2.10, in this case,

Γx = VS◦ (VS◦ (x)) ⊆ E(S◦).

Since Re1S◦ is orthodox, we have VS◦ (x) ⊆ E(S◦).

The following theorem shows that quasi-Ehresmann transversal have transitivity.

Theorem 3.5. Let S be a semi-abundant semigroup with a quasi-Ehresmann transversal S◦ and S∗ a quasi-Ehresmann
transversal of S◦. Then S∗ is a quasi-Ehresmann transversal of S.

Proof. By Lemma 2.7, IS◦ = {e ∈ E(S)|(∃e◦ ∈ E(S◦))eLe◦}. Let x ∈ S and (e1, x1, f1) ∈ ΩS◦ (x) with e1Lx†1R̃x1 and
x†1 ∈ E(S◦). Let (e2, x2, f2) ∈ ΩS∗ (x1) such that (In view of Lemma 2.8)

x†1R̃x1R̃e2Lx†2R̃x2, x1L̃ f2Rx∗2L̃x2, x†2, x
∗

2 ∈ E(S∗), e2, f2 ∈ E(S◦).

Then e1Lx†1Re2Lx†2. By Lemma 2.1, e1e2Lx†2. On the other hand, since e1 ∈ IS◦ and e2 ∈ E(S◦), e1e2 ∈ IS◦ ⊆ E(S)
by Definition 3.1 (ii). Dually, we can obtain that f2 f1 ∈ E(S) and f2 f1Rx∗2. Observe that x = e1x1 f1 =
(e1e2)x2( f2 f1), it follows that (e1e2, x2, f2 f1) ∈ ΩS∗ (x). This implies that ΓS∗ (x) , ∅ for all x ∈ S.
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On the other hand, by Lemma 2.7 again, we have

IS∗ = {e ∈ E(S)|(∃e∗ ∈ E(S∗))eLe∗},ΛS∗ = { f ∈ E(S)|(∃ f ∗ ∈ E(S∗)) fR f ∗}.

Let s, e∗ ∈ E(S∗) ⊆ E(S◦) and e∗Le ∈ IS∗ ⊆ IS◦ . Apply Definition 3.1 (ii) to IS◦ , es ∈ IS◦ ⊆ E(S). Observe that
esLe∗s ∈ E(S∗), it follows that es ∈ IS∗ . On the other hand, let se ∈ Re1S. Apply Definition 3.1 (ii) to IS◦ again,
se ∈ E(S). Hence, Definition 3.1 (ii) for IS∗ is satisfied. Dually, we can prove Definition 3.1 (iii) for ΛS∗ also
holds. Thus, S∗ is a quasi-Ehresmann transversal of S.

From Lemma 2.7, we have IE(S◦) ∪ E(S◦)Λ ⊆ Re1S. In the following, we shall give some equivalent
conditions such that E(S◦)I ∪ΛE(S◦) ⊆ Re1S. We give the lemma below firstly.

Lemma 3.6. Let a, b ∈ Re1S, e, f ∈ I and 1, h ∈ Λ. Then

(1) If a◦ ∈ VS◦ (a), then VS◦ (a) = VS◦ (a◦a)a◦VS◦ (aa◦);

(2) If eL f , then VS◦ (e) = VS◦ ( f );

(3) If 1Rh, then VS◦ (1) = VS◦ (h);

(4) If VS◦ (a) ∩ VS◦ (b) , ∅, then VS◦ (a) = VS◦ (b).

Proof. (1) Let a∗ ∈ VS◦ (a) and a◦◦ ∈ VS◦ (a◦). Then, by Lemma 2.1 (2)

a◦◦a◦Ra◦◦a◦aa∗La∗Ra∗aa◦a◦◦La◦a◦◦.

By Lemma 2.9, a◦◦a◦aa∗, a∗aa◦a◦◦ ∈ S◦. The remainder is similar to the proof of Lemma 2.4 in Chen [4].
(2) Let t ∈ VS◦ (e). By Lemma 2.7, we may let eL fLh for some h ∈ E(S◦). Then, (e, h, h) ∈ Ωe and so

h ∈ Γe ∩ E(S◦). By (3) of Theorem 3.4, t ∈ VS◦ (e) ⊆ E(S◦). In view of Definition 3.1 (ii), we have f t ∈ I.
Observe that tRteLeL f , it follows that fR f tLt by Lemma 2.1. Since f t ∈ I ⊆ E(S), by Lemma 2.1 again,
t fHte ∈ E(S). This implies that t f ∈ Re1S. By Definition 3.1 (ii), t f ∈ E(S). Hence, t f = te.

e et
f f t ∈ I

t f = te t
h

This implies that t f t = tet = t and f t f = ( f t) f = f . Therefore, t ∈ VS◦ ( f ) and so VS◦ (e) ⊆ VS◦ ( f ). Dually,
VS◦ ( f ) ⊆ VS◦ (e).

(3) This is the dual of (2).
(4) Let x ∈ VS◦ (a) ∩ VS◦ (b). Then axLbx and xaRxb. In view of Lemma 2.10, we have ax, bx ∈ I and

xa, xb ∈ Λ. By (1), (2) and (3), we have

VS◦ (a) = VS◦ (xa)xVS◦ (ax) = VS◦ (xb)xVS◦ (bx) = VS◦ (b),

as required.

Theorem 3.7. The following conditions on S are equivalent:

(1) (∀u, v ∈ I ∪Λ) “{u, v} ∩ E(S◦) , ∅ ⇒ ΓuΓv ⊆ Γuv”;

(2) E(S◦)I ⊆ E(S),ΛE(S◦) ⊆ E(S);

(3) (∀a, b ∈ Re1S) “{a, b} ∩ S◦ , ∅ ⇒ VS◦ (b)VS◦ (a) ⊆ VS◦ (ab)”.
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Proof. (1)implies (2). Let i ∈ I, λ ∈ Λ and s ∈ E(S◦). By Definition 3.1 (ii) and (iii), it suffices to show
si, λs ∈ Re1S. In fact, by Lemma 2.7, there exist i◦, λ◦ ∈ E(S◦) such that i◦Li and λ◦Rλ. This implies that
(i, i◦, i◦) ∈ Ωi and (λ◦, λ◦, λ) ∈ Ωλ. Hence, i◦ ∈ Γi and λ◦ ∈ Γλ. Clearly, s ∈ Γs. By (1), si◦ ∈ Γsi ∩ E(S◦) and
λ◦s ∈ Γλs ∩ E(S◦). In view of Lemma 2.10, we have si, λs ∈ Re1S.

(2) implies (3). Let a ∈ Re1S◦ and b ∈ Re1S. Take a◦ ∈ VS◦ (a) and b◦ ∈ VS◦ (b). Then a◦a ∈ E(S◦) and bb◦ ∈ I
by Lemma 2.10. By (2) and Definition 3.1 (ii), we have

abb◦a◦ab = a(a◦abb◦)(a◦abb◦)b = aa◦abb◦b = ab

and
b◦a◦abb◦a◦ = b◦(bb◦a◦a)(bb◦a◦a)a◦ = b◦bb◦a◦aa◦ = b◦a◦.

Dually, we can prove the case for a ∈ Re1S and b ∈ Re1S◦.
(3) implies (1). Let u ∈ E(S◦) and v ∈ I ∪Λ. Clearly, u, v ∈ Re1S. Take

u◦ ∈ VS◦ (u),u◦◦ ∈ VS◦ (u◦), v◦ ∈ VS◦ (v), v◦◦ ∈ VS◦ (v◦).

Then by (3), v◦u◦ ∈ VS◦ (uv). Since Re1S◦ is orthodox, we have

u◦◦v◦◦ ∈ VS◦ (u◦)VS◦ (v◦) ⊆ VS◦ (v◦u◦) ⊆ VS◦ (VS◦ (uv)).

Hence, by Lemma 2.10, ΓuΓv ⊆ Γuv. Similarly, we can show the case for v ∈ E(S◦) and u ∈ I∪Λ. This implies
that (1) holds.

The following Theorem 3.8 yields that if Condition (1) of Theorme 3.7 is strengthened by removing
{u, v} ∩ E(S◦) , ∅, then S itself is quasi-Ehreshmann.

Theorem 3.8. The following conditions on S are equivalent:

(1) (∀u, v ∈ I ∪Λ) ΓuΓv ⊆ Γuv;

(2) ΛI, IΛ ⊆ E(S);

(3) S is quasi-Ehreshmann.

Proof. (1) implies (2). Let i ∈ I and λ ∈ Λ. Then, by Lemma 2.7 (1), there exist i◦, λ◦ ∈ E(S◦) such that iLi◦ and
λRλ◦. This shows that (i, i◦, i◦) ∈ Ωi and (λ◦, λ◦, λ) ∈ Ωλ. Hence, i◦ ∈ Γi and λ◦ ∈ Γλ. By (1), λ◦i◦ ∈ Γλi∩E(S◦).
In view of Lemma 2.10, λi ∈ Re1S and Γλi = VS◦ (VS◦ (λi)) whence λ◦i◦ ∈ VS◦ (VS◦ (λi)). Hence, there exists
(λi)◦ ∈ VS◦ (λi) ∩ VS◦ (λ◦i◦). By Lemma 3.6 (4), VS◦ (λi) = VS◦ (λ◦i◦). Noticing that i◦λ◦, λ◦i◦ ∈ VS◦ (λ◦i◦), we
have λ◦i◦, i◦λ◦ ∈ VS◦ (λi). Thus,

λi = λii◦λ◦λi = λiλi ∈ E(S).

On the other hand, by similar arguments, we can obtain λ◦i◦ ∈ VS◦ (iλ). Hence,

iλ = iλλ◦i◦iλ = iλ◦i◦λ.

Since λ◦i◦ ∈ VS◦ (λi), this implies that

iλiλ = i(λ◦i◦λiλ◦i◦)λ = iλ◦i◦λ = iλ ∈ E(S).

(2) implies (3). Let a, b ∈ Re1S. Then, we can take a◦ ∈ VS◦ (a) and b◦ ∈ VS◦ (b) by Lemma 2.10. We assert
b◦a◦ ∈ VS◦ (ab). In fact, since bb◦ ∈ I and a◦a ∈ Λ by Lemma 2.10, by (2),

b◦a◦abb◦a◦ = b◦(bb◦a◦a)(bb◦a◦a)a◦ = b◦a◦

and
abb◦a◦ab = a(a◦abb◦)(a◦abb◦)b = ab.
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Hence, Re1S is a regular subsemigroup of S and

VRe1S◦ (b)VRe1S◦ (a) ⊆ VRe1S◦ (ab)

for each a, b ∈ Re1S. It is clear that Re1S◦ is a subsemigroup of Re1S and VRe1S◦ (a) = VS◦ (a) , ∅ for each
a ∈ Re1S. In view of Lemma 2.2 (1), Re1S is orthodox. Thus, S is quasi-Ehreshmann.

(3) implies (1). Let u, v ∈ I ∪Λ. Then u, v ∈ Re1S. Take

u◦ ∈ VS◦ (u),u◦◦ ∈ VS◦ (u◦), v◦ ∈ VS◦ (v), v◦◦ ∈ VS◦ (v◦).

By (3), Re1S is orthodox. This implies v◦u◦ ⊆ VS◦ (uv). Hence,

u◦◦v◦◦ ∈ VS◦ (u◦)VS◦ (v◦) ⊆ VS◦ (v◦u◦) ⊆ VS◦ (VS◦ (uv)).

In view of Lemma 2.10, ΓuΓv ⊆ Γuv.

Let S be a semi-abundant semigroup and S◦ a quasi-Ehreshmann transversal of S. We shall say that S◦

is strong if one (equivalently, all) of the conditions in Theorem 3.7 holds. Obviously, orthodox transversals
are strong quasi-Ehresmann transversals by Theorem 3.7 (3). However, quasi-Ehresmann transversals may
not be strong in general. The following result illustrates this situation.

Example 3.9. (Example 2.7 in [5]) Let S = {e, 1, h,w, f } with the following multiplication table

e 1 h w f
e e 1 e 1 1

1 1 1 1 1 1

h h 1 h 1 1

w w 1 w 1 1

f 1 1 w w f

.

Then, it is routine to check that S is a semi-abundant semigroup with a quasi-Ehresmann transversal S◦ = {w, e, f , 1}.
In this case, I = {e, h, f , 1} and f ∈ E(S◦), but f h = w < E(S).

Theorem 3.10. Let S be a semi-abundant semigroup with a strong quasi-Ehreshmann transversal S◦ and Ī the
subsemigroup generated by I. Then

(1) For ik ∈ I and i◦k ∈ E(S◦) such that ikLi◦k , where k = 1, 2, · · · ,n, we have i◦ni◦n−1 · · · i
◦

1 ∈ VS◦ (i1i2 · · · in).

(2) E(S◦) is an orthodox transversal of Ī and Ī is a subband of S.

Dually, we have a symmetrical result for Λ.

Proof. (1) Clearly, the result holds for the case n = 1. Now, we assume that the result holds for n = t− 1 and
prove that it is also true for n = t. Let

i1, i2, · · · , it ∈ I, x = i1i2 · · · it.

Then, by hypothesis, i◦t i◦t−1 · · · i
◦

2 ∈ VS◦ (i2i3 · · · it), which shows that i2i3 · · · it ∈ Re1S. Clearly, i◦1 ∈ Re1S◦. By
(3) of Theorem 3.7, we have i◦t i◦t−1 · · · i

◦

1 ∈ VS◦ (i◦1i2 · · · it). This yields i◦t i◦t−1 · · · i
◦

1 ∈ VS◦ (x). Indeed, observe that
ikLi◦k , k = 1, 2, 3, · · · , t, it follows that

i◦t i◦t−1 · · · i
◦

1xi◦t i◦t−1 · · · i
◦

1 = i◦t i◦t−1 · · · i
◦

1(i◦1i1i2 · · · it)i◦t i◦t−1 · · · i
◦

1 =

i◦t i◦t−1 · · · i
◦

1(i◦1i2 · · · it)i◦t i◦t−1 · · · i
◦

1 = i◦t i◦t−1 · · · i
◦

1

and
x(i◦t i◦t−1 · · · i

◦

1)x = i1(i◦1i2 · · · it)(i◦t i◦t−1 · · · i
◦

1)(i◦1i1i2 · · · it) = i1i2 · · · it = x.
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(2) By Lemma 2.7,

I = {e ∈ E(S)|(∃e◦ ∈ E(S◦))eLe◦},Λ = { f ∈ E(S)|(∃ f ◦ ∈ E(S◦)) fR f ◦}.

In view of item (1), Ī is a regular semigroup and VE(S◦)(x) , ∅ for all x ∈ Ī. Denote

IE(S◦) = {xx◦|x ∈ Ī, x◦ ∈ VE(S◦)(x)},ΛE(S◦) = {x◦x|x ∈ Ī, x◦ ∈ VE(S◦)(x)}.

Then by Lemma 2.7 and Lemma 2.10,

IE(S◦) = {e ∈ E(Ī)|(∃e◦ ∈ E(S◦))eLe◦},ΛE(S◦) = { f ∈ E(Ī)|(∃ f ◦ ∈ E(S◦)) fR f ◦}.

It is easy to see that I = IE(S◦) and ΛE(S◦) = Λ ∩ Ī. Hence by Definition 3.1 and Theorem 3.7 (2), we have

IE(S◦)E(S◦) = IE(S◦) ⊆ I = IE(S◦),E(S◦)IE(S◦) = E(S◦)I ⊆ E(S) ∩ Ī = E(Ī)

and
E(S◦)ΛE(S◦) = E(S◦)(Λ ∩ Ī) ⊆ E(S◦)Λ ∩ E(S◦)Ī ⊆ Λ ∩ Ī = ΛE(S◦),

ΛE(S◦)E(S◦) = (Λ ∩ Ī)E(S◦) ⊆ ΛE(S◦) ∩ ĪE(S◦) ⊆ E(S) ∩ Ī = E(Ī).

By Lemma 2.2 (2), E(S◦) is an orthodox transversal of Ī. According to Lemma 2.2 (3), the subsemigroup
generated by IE(S◦) = I in Ī is a subband of Ī. This implies that Ī itself is a subband of S. By dual arguments,
we can obtain a symmetrical result for Λ.

In the end of this section, we give some properties of semi-abundant semigroups with generalized
bi-ideal quasi-Ehreshmann transversals, which will be used in the next section. Recall that a subset T of a
semigroup S is called a generalized bi-ideal if TST ⊆ T.

Lemma 3.11. Let S be a semi-abundant semigroup with a strong quasi-Ehreshmann transversal S◦ which is also a
generalized bi-ideal of S. Then I and Λ are subbands of S. In this case, E(S◦)I ⊆ E(S◦) and ΛE(S◦) ⊆ E(S◦).

Proof. Let e, f ∈ I. Then, by Lemma 2.7, there exist e◦, f ◦ ∈ E(S◦) such that eLe◦ and fL f ◦. Since S◦ is a
generalized bi-ideal of S, e◦ f = e◦ f f ◦ ∈ S◦. By (2) of Theorem 3.7, we have e◦ f ∈ E(S). This implies that
e◦ f ∈ E(S◦). In virtue of condition (ii) of Definition 3.1, we have

e f = e(e◦ f ) ∈ IE(S◦) ⊆ I.

This shows that I is a subband of S. Dually, Λ is also a subband of S.
Now, let s ∈ E(S◦) and i ∈ I. Then, by Lemma 2.7, iLi◦ for some i◦ ∈ E(S◦). Since I is a subband and S◦ is

a generalized bi-ideal of S, we have
si = sii◦ ∈ I ∩ S◦ = E(S◦).

This yields that E(S◦)I ⊆ E(S◦). Dually, ΛE(S◦) ⊆ E(S◦).

Lemma 3.12. Let x, y ∈ S◦, e, 1 ∈ I, f , h ∈ Λ and eLx†, fRx∗, 1Ly†, hRy∗. Then

eR1, xδy, fLh⇔ ex f = 1yh.

Proof. Necessity. By hypothesis, we have x = kyl, where k ∈ E(y†) and l ∈ E(y∗)(Notice that k, l ∈ E(S◦)!). By
lemma 2.6, E(x†) = E(y†). By Lemma 2.1, we have

e 1, eky† ek
x† x†y†

y†x† y† y†k
ky†x† ky† k

.
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Since ky† ∈ E(S◦) and e ∈ I, by condition (i) of Definition 3.1, we have eky† ∈ I whence eky† = 1. Dually,
y∗l f = h. Therefore,

ex f = ekyl f = eky† · y · y∗l f = 1yh.

Sufficiency. Let ex f = 1yh. Then,

(e, x, f ), (1, y, h) ∈ Ωex f = Ω1yh.

By Lemma 2.8,
eR∗ex f = 1yhR∗1, fL∗ex f = 1yhL∗h.

The fact that xδy follows from Theorem 3.4 (1).

Lemma 3.13. The following statements are equivalent:

(1) S◦ is a generalized bi-ideal of S;

(2) (∀x, y ∈ S)(∀(e, x, f ) ∈ Ωx)(∀(1, y, h) ∈ Ωy) x f1y ∈ Γxy;

(3) (∀ f ∈ Λ)(∀1 ∈ I) f1 ∈ S◦.

Proof. (1)⇒ (2). By (1), x̄ f1ȳ ∈ S◦. Let eLx̄† and hRȳ∗. Then, for any (x̄ f1ȳ)† and (x̄ f1ȳ)∗, by Lemma 2.3 and
its dual, we have

e(x̄ f1ȳ)†Lx̄†(x̄ f1ȳ)† = (x̄ f1ȳ)†, (x̄ f1ȳ)∗hR(x̄ f1ȳ)∗ ȳ∗ = (x̄ f1ȳ)∗.

Observe that xy = e(x̄ f1ȳ)†x̄ f1ȳ(x̄ f1ȳ)∗h, it follows that x f1y ∈ Γxy.
(2)⇒ (3). Let f ∈ Λ and 1 ∈ I. Then, by Lemma 2.7, there exist f ◦, 1◦ ∈ E(S◦) such that fR f ◦ and 1L1◦.

Hence, ( f ◦, f ◦, f ) ∈ Ω f and (1, 1◦, 1◦) ∈ Ω1. By (2), f1 = f ◦ f11◦ ∈ Γ f1. Therefore, f1 ∈ S◦.
(3)⇒ (1). Let x, z ∈ S◦, y ∈ S and (1, ȳ, h) ∈ Ωy. Then, by (3) we have xyz = x(x̄∗1)ȳ(hz̄†)z ∈ S◦. This shows

that S◦ is a generalized bi-ideal of S.

4. A Structure Theorem

In this section, a structure theorem of semi-abundant semigroups with a generalized bi-ideal strong
quasi-Ehreshmann transversal is established by using so-calledQSQE-systems which are defined as follows.

Definition 4.1. Let I and Λ be two bands, S◦ be a quasi-Ehreshmann semigroup such that

E(S◦) = I ∩Λ,E(S◦)I ⊆ E(S◦),ΛE(S◦) ⊆ E(S◦)

and P be a Λ × I-matrix over S◦. Then (I,Λ,S◦,P) is called a QSQE-system if for all i, j ∈ E◦, e ∈ I and f ∈ Λ,

(QSQE) iP f ,e = Pi f ,e, P f ,e j = P f ,ej, P f ,i = f i, P j,e = je.

Let (I,Λ,S◦,P) be a QSQE-system and denote E◦ = E(S◦). Write

Q = Q(I,Λ,S◦,P) = {(Re, δ(x),L f ) ∈ I/R × S◦/δ ×Λ/L|eLx†, fRx∗ for some x†, x∗ ∈ E◦}.

The following result shows that the above set Q is well-defined.

Lemma 4.2. Let (Re, δ(x),L f ) ∈ Q and 1 ∈ I, y ∈ S◦, h ∈ Λ. If eR1, xδy and fLh, then there exist y†, y∗ ∈ E◦ such
that 1Ly† and hRy∗.
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Proof. Let (Re, δ(x),L f ) ∈ Q, 1 ∈ I, y ∈ S◦, h ∈ Λ and

eR1, xδy, fLh, eLx†, fRx∗

for some x†, x∗ ∈ E◦. Then, there exist i ∈ E(x†), λ ∈ E(x∗) such that y = ixλ. Let α = ix†1, β = hx∗λ. Since I and
Λ are bands and E◦I ⊆ E◦,ΛE◦ ⊆ E◦, we have α, β ∈ E◦. Since i ∈ E(x†), e, 1 ∈ I and x†LeR1, it follows that
e, 1, i, x† in the sameD-class of I(This method will be used in the rest of this section frequently). Hence,

1α = 1ix†1 = 1.

Clearly, α1 = α. Therefore, 1Lα. On the other hand, if k ∈ E◦ and ky = y, then kixλ = ixλ.This implies that

kix = kixx∗λx∗ = kixλx∗ = ixλx∗ = ixx∗λx∗ = ixx∗ = ix.

Since xR̃x†, we have ixR̃ix†, whence kix† = ix† by Lemma 2.3, and so kα = kix†1 = ix†1 = α. But αy =

(ix†1i)xλ = ixλ = y, again by Lemma 2.3, yR̃α. Therefore, 1LαR̃y. Dually, we have hRβL̃y.

Lemma 4.3. Define a multiplication on Q by the rule

(Re, δ(x),L f )(R1, δ(y),Lh) = (Rea† , δ(a),La∗h),

where a = xP f ,1y. Then the following statements are true:

(1) (Rea† , δ(a),La∗h) ∈ Q dose not depend on the choice of a∗ and a†;

(2) the above multiplication dose not depend on the choice of e, x, f and 1, y, h;

(3) Q becomes a semigroup with the above multiplication.

Proof. (1) Let (Re, δ(x),L f ), (R1, δ(y),Lh) ∈ Q and eLx†, hRy∗ for some x†, y∗ ∈ E◦. Then, by Lemma 2.3
and its dual, x†a† = a† and a∗y∗ = a∗. Therefore, ea†Lx†a† = a† and a∗hRa∗y∗ = a∗. This implies that
(Rea† , δ(a),La∗h) ∈ Q. If a††, a∗∗ ∈ E◦ and a∗∗L̃aR̃a††, then a†Ra†† and a∗La∗∗, whence ea†Rea†† and a∗hLa∗∗h. This
proves that (Rea† , δ(a),La∗h) dose not depend on the choice of a∗ and a†.

(2) Let (Re, δ(x),L f ) = (Rk, δ(z),Ll), (R1, δ(y),Lh) = (Rp, δ(w),Lq) ∈ Q and

eLx†, kLz†, 1Ly†, pLw†, fRx∗, lRz∗, hLy∗, qLw∗.

Then,
eRk, xδz, fLl, 1Rp, yδw, hLq.

By Lemma 2.6 (1), there exist

i ∈ E(z†) = E(x†), λ ∈ E(z∗) = E(x∗), j ∈ E(w†) = E(y†), µ ∈ E(w∗) = E(y∗)

such that x = izλ and y = jwµ. Let a = xP f ,1y and b = zPl,pw. Then,

a = xP f ,1y = izλP f ,1 jwµ = izPλ f ,1 jwµ ((QSQE), λ, j ∈ E◦)

= izPλ f z∗l,pw†1 jwµ ( fLl, 1Rp, lRz∗, pLw†)

= izz∗λ f z∗Pl,pw†1 jw†wµ ((QSQE), λ f z∗,w†1 j ∈ E◦, zz∗ = z,w†w = w)

= izPl,pwµ (λ ∈ E(z∗) = E(x∗), fRx∗, j ∈ E(w†) = E(y†), 1Ly†, zz∗ = z,w†w = w)

= (ib†)b(b∗µ).
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Noticing that i ∈ E(z†) and z†b = b, we have z†b† = b† and ib† ∈ E(b†). Dually, b∗µ ∈ E(b∗). Thus, δ(a) = δ(b).
By lemma 2.6 (3), we have ib†Ra†, b∗µLa∗ and E(a†) = E(b†). Therefore,

ea†kb† = kz†ex†a†kb† (eRkLz†, x†a† = a†)
= kz†a†kb† (E(x†) = E(z†), eLx†)
= kz†a†b† (kLz†, z†b† = b†, a†kb† ∈ E(a†) = E(b†))
= kz†(ib†)a†b† = kz†ib† (a†Rib†, a† ∈ E(b†))
= kz†iz†b† = kz†b† = kb†. (z†b† = b†, i ∈ E(z†))

By the above identity and its dual, we have ea†Rkb†. Dually, we can obtain a∗hLb∗q. Hence,

(Re, δ(x),L f )(R1, δ(y),Lh) = (Rea† , δ(a),La∗h)

= (Rkb† , δ(b),Lb∗q) = (Rk, δ(z),Ll)(Rp, δ(w),Lq).

(3) Let m1 = (Re, δ(x),L f ),m2 = (R1, δ(y),Lh),m3 = (Rs, δ(z),Lt) ∈ Q. Then,

(m1m2)m3 = (Rea† , δ(a),La∗h)m3 = (Rec† , δ(c),Lc∗t),

m1(m2m3) = m1(R1b† , δ(b),Lb∗t) = (Red† , δ(d),Ld∗t).

By (QSQE), we have

c = aPa∗h,sz = aa∗Ph,sz = aPh,sz = xP f ,1yPh,sz = xP f ,1b†b = xP f ,1b†b = d,

which implies that (m1m2)m3 = m1(m2m3).

Lemma 4.4. Let (Re, δ(x),L f ) ∈ Q. Then (Re, δ(x),L f ) ∈ E(Q) if and only if xP f ,ex = x.

Proof. Let (Re, δ(x),L f ) ∈ Q, eLx† and fRx∗. If (Re, δ(x),L f ) ∈ E(Q), then

(Re, δ(x),L f ) = (Rea† , δ(a),La∗ f ),

where a = xP f ,ex. Hence, there exist i ∈ E(x†) and λ ∈ E(x∗) such that xP f ,ex = ixλ. Thus,

xP f ,ex = x†xP f ,exx∗ = x†ixλx∗ = x†i(x†xx∗)λx∗ = (x†ix†)x(x∗λx∗) = x†xx∗ = x.

Conversely, if x = xP f ,ex, then

(Re, δ(x),L f )2 = (Rex† , δ(x),Lx∗ f ) = (Re, δ(x),L f ) ∈ E(Q),

as required.

Lemma 4.5. Let (Re, δ(x),L f ) ∈ Q and eLx†, fRx∗ for some x†, x∗ ∈ E◦. Then (Re, δ(x†),Lx† ) ∈ E(Q) and
(Re, δ(x),L f )R̃(Re, δ(x†),Lx† ).

Proof. Clearly, (Re, δ(x†),Lx† ) ∈ Q. In view of Condition (QSQE), we have

x†Px†,ex† = x†(x†e)x† = x†x†x† = x†,

whence (Re, δ(x†),Lx† ) ∈ E(Q) by Lemma 4.4. By similar calculations, we can obtain that

(Re, δ(x†),Lx† )(Re, δ(x),L f ) = (Re, δ(x),L f ). (1)

Now, let (R1, δ(y),Lh) ∈ E(Q) and

(R1, δ(y),Lh)(Re, δ(x),L f ) = (Re, δ(x),L f ).
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Then yPh,1y = y by Lemma 4.4 and (R1a† , δ(a),La∗ f ) = (Re, δ(x),L f ), where a = yPh,ex. This implies that

yPh,1 ∈ E◦, 1a†Re, a∗ fL f ,E(x†) = E(a†)

by Lemma 2.6. Since eLx† and E(x†) = E(a†), we have a†e = a†ex† = a†x†. In view of Condition (QSQE) and
the fact 1a†Re, we obtain

yPh,ex† = yPh,1a†ex† = yPh,1a†x†x† = (yPh,1)a†x† ∈ E◦.

Since xR̃x† and R̃ is a left congruence, we have a = yPh,exR̃yPh,ex†. This yields that a†RyPh,ex† and yPh,ex† ∈
E(a†) = E(x†) since yPh,ex† ∈ E◦. So

eR1a†R1yPh,ex†, δ(yPh,ex†) = δ(x†), yPh,ex†Lx†.

In view of Lemma 4.3 (1) and the fact yPh,ex† ∈ E◦, we have

(R1, δ(y),Lh)(Re, δ(x†),Lx† ) = (R1yPh,ex† , δ(yPh,ex†),LyPh,ex†x† ) = (Re, δ(x†),Lx† ). (2)

According to items (1) and (2), we have (Re, δ(x†),Lx† )R̃(Re, δ(x),L f ) by Lemma 2.3.

Lemma 4.6. Let (Re, δ(x),L f ) and (R1, δ(y),Lh) ∈ Q. Then (Re, δ(x),L f )R̃(R1, δ(y),Lh) if and only if eR1.

Proof. Now, let m1 = (Re, δ(x),L f ),n1 = (R1, δ(y),Lh) ∈ Q and

eLx†, 1Ly†,m
′

1 = (Re, δ(x†),Lx† ),n
′

1 = (R1, δ(y†),Ly† ).

Then by (QSQE),
m
′

1n
′

1 = (Reu† , δ(u),Lu∗y† ),u = x†Px†,1y† = x†1 ∈ E◦.

If m1R̃n1, then by Lemma 4.5, we have m′

1Rn′1, which is equivalent to m′

1n′1 = n′1 and n′1m′

1 = m′

1. But
m′

1n′1 = n′1 implies 1Reu† whence e1 = 1. Dually, n′1m′

1 = m′

1 implies 1e = e. Therefore, eR1. Conversely, if
eR1, then by Lemma 2.1, we have

e 1 eu†

x† x†y† = x†1 = u u†

y†e y†

u∗
. (3)

Hence,
m
′

1n
′

1 = (Reu† , δ(u),Lu∗y† ) = (Re, δ(x†y†),Ly† ) = (R1, δ(y†),Ly† ) = n
′

1.

Dually, we have n′1m′

1 = m′

1. Hence, m′

1Rn′1. Again by Lemma 4.5, m1R̃n1.

Lemma 4.7. Q is a semi-abundant semigroup and

Q◦ = {(Rx† , δ(x),Lx∗ ) ∈ Q|x ∈ S◦}

is a quasi-Ehreshmann ∼-subsemigroup of Q isomorphic to S◦ such that

ΓQ◦ ((Re, δ(x),L f )) , ∅

for all (Re, δ(x),L f ) in Q.
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Proof. By Lemma 4.5, each L̃-class and each R̃-class of Q contains idempotents. Let

m1 = (Re, δ(x),L f ),m2 = (R1, δ(y),Lh),m3 = (Rs, δ(z),Lt) ∈ Q

and eLx†, 1Ly†,m1R̃n1. By Lemma 4.6, we have eR1. In view of the diagram (3), we have x†e = x† and
x†1 = x†y†. This implies that x† = x†eRx†1 = x†y† whence zPt,ex†RzPt,ex†y†. By (QSQE) and the diagram (3),

zPt,ex†RzPt,ex†y†y† = zPt,ex†y† y† = zPt,1y†.

On the other hand, since xR̃x†, we have zPt,exR̃zPt,ex†. Similarly, we have zPt,1yR̃zPt,1y†. Thus, zPt,exR̃zPt,1y
and so (zPt,ex)†R(zPt,1y)†. This implies that s(zPt,ex)†Rs(zPt,1y)†. By Lemma 4.6, we have m3m1R̃m3m2. We
have shown that R̃ is a left congruence. Dually, L̃ is a right congruence. Therefore, Q is a semi-abundant
semigroup.

Now, define
ψ : Q◦ → S◦, (Rx† , δ(x),Lx∗ ) 7→ x.

Then, by Lemma 2.6 (3), ψ is bijective. It is also a homomorphism. In fact, by (QSQE),

(Rx† , δ(x),Lx∗ )(Ry† , δ(y),Ly∗ ) = (, δ(xPx∗,y†y), ) = (, δ(xx∗y†y), ) = (, δ(xy), ).

Moreover, by Lemma 4.6 and its dual, for each (Rx† , δ(x),Lx∗ ) ∈ Q◦, we have

(Rx† , δ(x†),Lx† )R̃(Rx† , δ(x),Lx∗ )L̃(Rx∗ , δ(x∗),Lx∗ )

and
(Rx† , δ(x†),Lx† ), (Rx∗ , δ(x∗),Lx∗ ) ∈ E(Q◦).

Hence, Q◦ is a quasi-Ehreshmann ∼-subsemigroup of Q.
Let m = (Re, δ(x),L f ) ∈ Q and eLx†, fRx∗. Then m̄ = (Rx† , δ(x),Lx∗ ) ∈ Q◦. By condition (QSQE), Lemma

4.5, Lemma 4.6 and their dual, we have

(Rx† , δ(x†),Lx† ) = m̄†R̃m̄L̃m̄∗ = (Rx∗ , δ(x∗),Lx∗ )

and
m̄†Lem = (Re, δ(x†),Lx† ) ∈ E(Q), m̄∗R fm = (Rx∗ , δ(x∗),L f ) ∈ E(Q).

It is routine to check that m = emm̄ fm. This proves that ΓQ◦ ((Re, δ(x),L f )) , ∅.

Lemma 4.8. The following statements hold:

(1) E(Q◦) = {(Re, δ(e),Le) ∈ Q◦|e ∈ E◦};

(2) IQ◦ = {(R1, δ(h),Lh) ∈ E(Q)|1Lh & h ∈ E◦};

(3) ΛQ◦ = {(R1, δ(1),Lh) ∈ E(Q)|1Rh & 1 ∈ E◦}.

Proof. (1) Let (Rx† , δ(x),Lx∗ ) ∈ E(Q◦). By Lemma 4.6 and condition (QSQE),

x = xPx∗,x†x = xx∗x†x = xx ∈ E◦.

Hence,
(Rx† , δ(x),Lx∗ ) = (Rx, δ(x),Lx) ∈ {(Re, δ(e),Le) ∈ Q◦|e ∈ E◦}.

The reverse inclusion is obvious.
(2) Let (Re, δ(x),L f ) ∈ IQ◦ and eLx†, fRx∗. Then, by Lemma 4.4, Lemma 4.7 and Lemma 2.7, we have

xP f ,ex = x, (Re, δ(x),L f )L(Ri, δ(i),Li)
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for some (Ri, δ(i),Li) ∈ E(Q◦) where i ∈ E◦. Thus, by the dual of Lemma 4.6, fLi whence f = f i ∈ E◦ since
i ∈ E◦ and E◦Λ ⊆ Λ. By (QSQE), P f ,e = f e ∈ E◦I ⊆ E◦. Since xP f ,ex = x, we have xP f ,e,P f ,ex ∈ E◦. Therefore,

x = xP f ,ex = (x( f e))(( f e)x) ∈ E◦E◦ ⊆ E◦.

Moreover, by Lemma 2.1,
x x†

x∗ x∗x† f
e e f = k

.

Thus,
(Re, δ(x),L f ) = (Rk, δ( f ),L f ) ∈ {(R1, δ(h),Lh) ∈ E(Q)|1Lh & h ∈ E◦}.

Conversely, let (R1, δ(h),Lh) ∈ E(Q) and 1Lh ∈ E◦. Then, by the dual of Lemma 4.6 and Lemma 4.7, we can
obtain

(Rh, δ(h),Lh) ∈ E(Q◦), (R1, δ(h),Lh)L(Rh, δ(h),Lh).

By Lemma 2.7, (R1, δ(h),Lh) ∈ IQ◦ .
(3) This is the dual of (2).

Lemma 4.9. Q◦ is a generalized bi-ideal strong quasi-Ehreshmann transversal of Q.

Proof. By Lemma 4.7, Lemma 3.13 and the definition of strong quasi-Ehreshmann transversals, it suffices
to prove that IQ◦ and ΛQ◦ are subbands of Q and ΛQ◦ IQ◦ ⊆ Q◦. For the first part, we only prove the case for
IQ◦ , the similar argument holds for ΛQ◦ . By Lemma 4.8, let

(Re, δ( f ),L f ), (R1, δ(h),Lh) ∈ I(Q), eL f ∈ E◦, 1Lh ∈ E◦.

By (QSQE),
a = f P f ,1h = P f f ,1h = P f ,1 = f1 ∈ E◦.

Then by Lemma 4.3 (1) and Lemma 4.8,

(Re, δ( f ),L f )(R1, δ(h),Lh) = (Re( f1), δ( f1),L( f1)h) = (Re1, δ( f1),L f1) ∈ IQ◦ .

Now, let
(Re, δ( f ),L f ) ∈ IQ◦ , (R1, δ(1),Lh) ∈ ΛQ◦

and eL f ∈ E◦, hR1 ∈ E◦ by Lemma 4.8. Then,

(R1, δ(1),Lh)(Re, δ( f ),L f ) = (R1b† , δ(b),Lb∗ f ).

Since b = 1Ph,e f , we have 1b† = b† and b∗ f = b∗ by Lemma 2.3 and its dual. Therefore,

(R1, δ(1),Lh)(Re, δ( f ),L f ) = (Rb† , δ(b),Lb∗ ) ∈ Q◦,

as required.

Now, we can give our main result in this section.

Theorem 4.10. Let (I,Λ,S◦,P) be a QSQE-system. Then Q is a semi-abundant semigroup with a generalized
bi-ideal strong quasi-Ehreshmann transversal isomorphic to S◦; Conversely, every such semigroup can be obtained in
this way.
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Proof. The direct part follows from Lemma 4.7 and Lemma 4.9. Conversely, let S be a semi-abundant
semigroup with a generalized bi-ideal strong quasi-Ehreshmann transversal S◦. Then we define I and Λ as
in Section 2 and P f ,e = f e ∈ S◦ for e ∈ I and f ∈ Λ by Lemma 3.13. Then, (I,Λ,S◦,P) is a QSQE-system by
Lemma 2.7 and Lemma 3.11. By the proof of the direct part, we can construct a semi-abundant semigroup
Q with a generalized bi-ideal strong quasi-Ehreshmann transversal Q◦ isomorphic to S◦.

Let
ϕ : Q→ S, (Re, δ(x),L f ) 7→ ex f .

By Lemma 3.12, ϕ is well-defined and injective. Let m ∈ S. Then, there exist e, f ∈ E(S) and m̄ ∈ S◦ such that
(e, m̄, f ) ∈ Ωm. Hence, (Re, δ(m̄),L f ) ∈ Q and

ϕ(Re, δ(m̄),L f ) = em̄ f = m.

That is, ϕ is surjective. Let (Re, δ(x),L f ), (R1, δ(y),Lh) ∈ Q. Then,

ϕ((Re, δ(x),L f )(R1, δ(y),Lh)) = ϕ((Re(xP f ,1y)† , δ(xP f ,1y),L(xP f ,1y)∗h))
= ϕ((Re(x f1y)† , δ(x f1y),L(x f1y)∗h))

= e(x f1y)† · x f1y · (x f1y)∗h
= ex f1yh
= ϕ(Re, δ(x),L f ) · ϕ(R1, δ(y),Lh).

This implies that ϕ is indeed an isomorphism from Q onto S.

Now, we apply our Theorem 4.10 to the class of regular semigroups with a generalized bi-ideal orthodox
transversal. The following theorem gives a structure theorem for regular semigroups with generalized bi-
ideal orthodox transversals, which substantively is the Theorem 3.4 in Chen [4].

Corollary 4.11. Let (I,Λ,S◦,P) be a QSQE-system such that S◦ is an orthodox semigroup. Then Q is a regular
semigroup with a generalized bi-ideal orthodox transversal isomorphic to S◦. Conversely, every such semigroup can
be obtained in this way.

Proof. It follows from Theorem 3.2 and Theorem 4.10.

5. Some Remarks

In this section, we give some remarks on the results obtained in this paper. Let S be a semigroup and
x, y ∈ S. The Green’s *-relations can be defined as follows. That xR∗y means that ax = bx if and only if
ay = by for all a, b ∈ S1. The relation L∗ can be defined dually. DenoteH ∗ = L∗ ∩ R∗. Clearly, L∗ is a right
congruence and R∗ is a left congruence. A semigroup is called abundant if each L∗-class and each R∗-class
contains idempotents. An abundant semigroup S is quasi-adequate if its idempotents form a subsemigroup
of S. An abundant subsemigroup U of an abundant semigroup S is called a ∗-subsemigroup of S if

L
∗(U) = L∗(S) ∩ (U ×U),R∗(U) = R∗(S) ∩ (U ×U).

It is well known (and easy to prove) that abundant semigroups are always semi-abundant semigroups
and quasi-adequate semigroups are always quasi-Ehresmann semigroups. Moreover, in an abundant
semigroup S, we haveL∗ = L̃,R∗ = R̃ andH ∗ = H̃ and so ∗-subsemigroups of S and ∼-subsemigroups of S
are equal. Thus, we have the following remark.

Remark 5.1. Quasi-Ehresmann transversals of abundant semigroups are generalizations of orthodox transversals of
regular semigroups in the range of abundant semigroups.

On the other hand, Ni [18] introduced quasi-adequate transversals of abundant semigroups (with the
notations in this paper) as follows: A quasi-adequate ∗-subsemigroup S◦ of an abundant semigroup S is
called a quasi-adequate transversal of S if
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(i) Γx , ∅ for all x ∈ S.

(ii) ΓeΓs ⊆ Γse and ΓsΓe ⊆ Γes for all e ∈ E(S) and s ∈ E(S◦).

From Ni [18], a multiplicative orthodox transversal of a regular semigroup S is always a multiplicative
quasi-adequate transversal of S. In the following, we give an example to show that, in general, an orthodox
transversal S◦ of a regular semigroup S may not be a quasi-adequate transversal of S even if S◦ is also a
generalized bi-ideal of S.

Example 5.2. Let S be an inverse monoid with identity 1 which is not a Clifford semigroup. Then there exist α ∈ S
and i ∈ E(S) such that αi , iα. Suppose that M ≡ M(S, 2, 2,P) is the Rees matrix semigroup over S, where the
entries of its sandwich matrix P = (puv)2×2 are

p11 = p12 = p21 = 1, p22 = α−1.

Denote M◦ = {(1, x, 1)|x ∈ S}. Then M◦ is an inverse subsemigroup and a generalized bi-ideal of M, and
VM◦ ((u, x, v)) = {(1, x−1, 1)} for all (u, x, v) ∈ M where x−1 is the unique inverse of x in S. For (u, x, v) ∈ M,
we denote (u, x, v)◦ = (1, x−1, 1). Now, let (u1, x1, v1), (u2, x2, v2) ∈M and

{(u1, x1, v1), (u2, x2, v2)} ∩M◦ , ∅.

It is easy to check that
VM◦ ((u1, x1, v1)(u2, x2, v2)) = {((u1, x1, v1)(u2, x2, v2))◦}

= {(u2, x2, v2)◦(u1, x1, v1)◦} = VM◦ ((u2, x2, v2))VM◦ ((u1, x1, v1)).

This implies that M◦ is an orthodox transversal of M.
On the other hand, since M is regular and M◦ is an inverse subsemigroup of M, M is abundant and M◦ is a

quasi-adequate ∗-subsemigroup of M certainly. Let (u, x, v) ∈M. Then (1, x, 1) ∈M◦ and

(1, x, 1)† = (1, xx−1, 1), (1, x, 1)∗ = (1, x−1x, 1).

It is easy to see that
((u, x, v)(u, x, v)◦, (1, x, 1), (u, x, v)◦(u, x, v)) ∈ Ω(u,x,v)

and so (1, x, 1) ∈ Γ(u,x,v). If (1, y, 1) ∈ Γ(u,x,v), then there exist

(u1, z1, v1), (u2, z2, v2) ∈ E(M)

such that
(u, x, v) = (u1, z1, v1)(1, y, 1)(u2, z2, v2)

and
(u1, z1, v1)L(1, y, 1)† = (1, yy−1, 1), (u2, z2, v2)R(1, y, 1)∗ = (1, y−1y, 1).

This implies that
u1 = u, v2 = v, v1 = u2 = 1

and
z1, z2 ∈ E(S), z1Lyy−1, z2Ly−1y

in S whence z1 = yy−1 and z2 = y−1y since S is inverse. Thus, we have

(u, x, v) = (u1, z1, v1)(1, y, 1)(u2, z2, v2) = (u, yy−1, 1)(1, y, 1)(1, y−1y, v) = (u, y, v)

and so (1, y, 1) = (1, x, 1). We have shown that Γ(u,x,v) = {(1, x, 1)} for all (u, x, v) ∈ M. For (2, α, 2) ∈ E(M) and
(1, i, 1) ∈ E(M◦), we have

Γ(2,α,2) = {(1, α, 1)},Γ(1,i,1) = {(1, i, 1)},
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Γ((1,i,1)(2,α,2)) = Γ(1,iα,1) = {(1, iα, 1)}.

and
Γ(2,α,2)Γ(1,i,1) = {(1, α, 1)(1, i, 1)} = {(1, αi, 1)}.

Since αi , iα, it follows that Γ(2,α,2)Γ(1,i,1) is not contained in Γ(1,i,1)(2,α,2). This implies that M◦ is not a quasi-adequate
transversal of M.

The above Example 5.2 implies the following remark.

Remark 5.3. Quasi-adequate transversals of abundant semigroups are not generalizations of orthodox transversals
of regular semigroups in the range of abundant semigroups.

To explore some relations between quasi-adequate transversals and quasi-Ehresmann transversals of
abundant semigroups, we need the following proposition.

Proposition 5.4. Let S be an abundant semigroup and S◦ a generalized bi-ideal quasi-adequate transversal of S.
Then

E(S◦)I ⊆ E(S◦), IE(S◦) ⊆ I,E(S◦)Λ ⊆ Λ,ΛE(S◦) ⊆ E(S◦),

where I and Λ are defined in the statements before Lemma 2.7.

Proof. In fact, let e ∈ I and f ∈ E(S◦). By Lemma 2.7, there exists e◦ ∈ I such that eLe◦, and so e◦ ∈ Γe
and e◦ f ∈ E(S◦). Since S◦ is a generalized bi-ideal of S, we have f e = f ee◦ ∈ S◦. Obviously, f ∈ Γ f . By
the definition of quasi-adequate transversals, e◦ f ∈ ΓeΓ f ⊆ Γ f e. By Lemma 2.10 and e◦ f ∈ E(S◦) ⊆ Re1S◦,
it follows that e◦ f ∈ VS◦ (VS◦ ( f e)). Noticing that e◦ f ∈ E(S◦), f e ∈ S◦ and Re1S◦ is orthodox, we obtain
f e ∈ E(S◦). On the other hand, by the above discussions, we can see that e◦ f and e f are in the sameD-class
of E(S◦). In view of the fact eLe◦, we have e fLe◦ f ∈ E(S◦) and

(e f )2 = e f e f = ee◦ f ee◦ f = e(e◦ f f ee◦ f ) = ee◦ f = e f .

Again by Lemma 2.7, we have e f ∈ I. Dually, we can prove that E(S◦)Λ ⊆ Λ and ΛE(S◦) ⊆ E(S◦).

In view of Definition 3.1, Theorem 3.7 and Proposition 5.4, we have the remark below.

Remark 5.5. A generalized bi-ideal quasi-adequate transversal of an abundant semigroup S is always a generalized
bi-ideal strong quasi-Ehresmann transversal of S. The converse is not true by the Example 5.2.

However, up to now we do not know whether a quasi-adequate transversal of an abundant semigroup
is a quasi-Ehresmann transversal in general. This would be an interesting problem to be considered in the
future research works.
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