Filomat 29:5 (2015), 985–1005 DOI 10.2298/FIL1505985W

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Semi-abundant Semigroups with Quasi-Ehresmann Transversals

Shoufeng Wang^a

^aSchool of Mathematics, Yunnan Normal University, Kunming, 650500, P. R. China

Abstract. Chen (Communications in Algebra 27(2), 4275-4288, 1999) introduced and investigated orthodox transversals of regular semigroups. In this paper, we initiate the investigation of quasi-Ehresmann transversals of semi-abundant semigroups which are generalizations of orthodox transversals of regular semigroups. Some interesting properties associated with quasi-Ehresmann transversals are established. Moreover, a structure theorem of semi-abundant semigroups with generalized bi-ideal strong quasi-Ehresmann transversals is obtained. Our results generalize and enrich Chen's results.

1. Introduction

The concept of inverse transversals was introduced by Blyth-McFadden [3]. From then on, inverse transversals have been extensively investigated and generalized by many authors (for example, see [1]-[7], [14]-[15] and [18]). Since orthodox semigroups can be regarded as generalizations of inverse semigroups, in 1999, Chen [4] generalized inverse transversals to *orthodox transversals* in the class of regular semigroups and gave a construction theorem for a kind of regular semigroups with orthodox transversals. Furthermore, Chen-Guo [6] explored some interesting properties associated with orthodox transversals. Most recently, Kong [14, 15] also investigated orthodox transversals and obtained some new results.

On the other hand, semi-abundant semigroups are generalized regular semigroups and have been studied by many authors, for example, see the texts [8]-[12] and [16]-[17]. In particular, Ehbal-El-Qallali [17] investigated a class of semi-abundant semigroups whose idempotents form a subsemigroup, El-Qallali-Fountain-Gould [8] and Gomes-Gould [10] studied some classes of semi-abundant semigroups by so called *"fundamental approaches"* and Lawson [16] considered some kinds of semi-abundant semigroups by *"category approaches"*. Fountain-Gomes-Gould [9] investigated this class of semigroups from the viewpoint of variety, and Gould [11] gave a survey of investigations of special semi-abundant semigroups, namely restriction semigroups and Ehresmann semigroups. Moreover, He-Shum-Wang [12] considered the representations of quasi-Ehresmann semigroups.

In this paper, we initiate the study of semi-abundant semigroups by using the idea of *"transversals"* which was firstly used to the study of regular semigroups by Blyth and McFadden in [3]. Specifically, we introduce the concept of quasi-Ehresmann transversals for semi-abundant semigroups, which is a generalization of

²⁰¹⁰ Mathematics Subject Classification. Primary 20M10

Keywords. Quasi-Ehresmann transversals; Semi-abundant semigroups; Orthodox transversals

Received: 05 November 2013; Accepted: 27 February 2015

Communicated by Miroslav Ciric

Research supported jointly by a Nature Science Foundation of Yunnan Province (2012FB139) and a Nature Science Foundation of China (11301470).

Email address: wsf1004@163.com (Shoufeng Wang)

the concept of orthodox transversals of regular semigroups, and give some properties associated with quasi-Ehresmann transversals. Furthermore, a structure theorem of semi-abundant semigroups with generalized bi-ideal strong quasi-Ehresmann transversals is obtained. Our results generalize and enrich the main results associated with orthodox transversals obtained in the texts Chen [4] and Chen-Guo [6].

2. Preliminaries

Let *S* be a semigroup. We use E(S) to denote the set of idempotents of *S*. For $x, a \in S$, if axa = a and xax = x, then *a* is called an *inverse* of *x* in *S*. We also let

$$V(x) = \{a \in S | axa = a, xax = x\}.$$

An element *x* in *S* is called *regular* if $V(x) \neq \emptyset$. A semigroup *S* is *regular* if every element in *S* is regular. A semigroup is regular if and only if each \mathcal{L} -class (or \mathcal{R} -class) of *S* contains idempotents. A regular semigroup *S* is called *orthodox* if E(S) is a subsemigroup of *S*, an orthodox semigroup *S* is *inverse* if E(S) is a commutative subsemigroup of *S*. For $\mathcal{K} \in {\mathcal{L}, \mathcal{R}}$ and $x \in S$, we use K_x to denote the \mathcal{K} -class of *S* containing *x*. On Green's relations, we also need the following results.

Lemma 2.1 ([13]). For any semigroup S, the following statements are true:

- (1) If $e, f \in E(S)$ and $e\mathcal{D}f$ in S, then each element a of $R_e \cap L_f$ has a unique inverse a' in $R_f \cap L_e$ such that aa' = e and a'a = f.
- (2) If $a, b \in S$, then $ab \in R_a \cap L_b$ if and only if $L_a \cap R_b$ contains an idempotent.

Let *S* be a semigroup, S° a subsemigroup of *S*, $a \in S$ and $A \subseteq S$. Throughout this paper, we denote

$$V_{S^{\circ}}(a) = V(a) \cap S^{\circ}, V_{S^{\circ}}(A) = \bigcup_{a \in A} V_{S^{\circ}}(a).$$

Let *S* be a regular semigroup and *S*° a subsemigroup of *S*. According to Blyth-McFadden [3], *S*° is called an *inverse transversal* if $|V_{S^\circ}(a)| = 1$ for all $a \in S$. On the other hand, from Chen [4], a subsemigroup *S*° of a regular semigroup *S* is called *an orthodox transversal* of *S* if

- (i) $V_{S^{\circ}}(a) \neq \emptyset$ for all $a \in S$;
- (ii) $\{a, b\} \cap S^{\circ} \neq \emptyset$ implies that $V_{S^{\circ}}(b)V_{S^{\circ}}(a) \subseteq V_{S^{\circ}}(ab)$ for all $a, b \in S$.

On orthodox transversals, we need the following results.

Lemma 2.2 ([6]). Let *S* be a regular semigroup and *S*° a subsemigroup of *S* such that $V_{S^{\circ}}(a) \neq \emptyset$ for all $a \in S$. Denote

$$I = \{aa^{\circ}|a^{\circ} \in V_{S^{\circ}}(a), a \in S\}, \Lambda = \{a^{\circ}a|a^{\circ} \in V_{S^{\circ}}(a), a \in S\}.$$

(1) *S* is an orthodox semigroup if and only if $V_{S^{\circ}}(a)V_{S^{\circ}}(b) \subseteq V_{S^{\circ}}(ba)$ for all $a, b \in S$.

(2) S° is an orthodox transversal of S if and only if

$$IE(S^{\circ}) \subseteq I, E(S^{\circ})\Lambda \subseteq \Lambda, E(S^{\circ})I \subseteq E(S), \Lambda E(S^{\circ}) \subseteq E(S).$$

(3) If S° is an orthodox transversal of S, then the subsemigroup generated by I (resp. Λ) is a subband of S.

Let *S* be a semigroup and $a, b \in S$. That $a\mathcal{R}b$ means that ea = a if and only if eb = b for all $e \in E(S)$. The relation \mathcal{L} can be defined dually. Denote $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$. In general, \mathcal{L} is not a right congruence and \mathcal{R} is not a left congruence. Obviously, $\mathcal{L} \subseteq \mathcal{L}$ and $\mathcal{R} \subseteq \mathcal{R}$. If $a, b \in RegS$, the set of regular elements of *S*, then $a\mathcal{R}b$ (resp. $a\mathcal{L}b$) if and only if $a\mathcal{R}b$ (resp. $a\mathcal{L}b$). On the relation \mathcal{R} on a semigroup *S*, we have the following easy but useful result.

Lemma 2.3. Let *S* be a semigroup and $a \in S, e \in E(S)$. Then the following statements are equivalent:

- (1) *e***R***a*;
- (2) ea = a and for all $f \in E(S)$, fa = a implies fe = e.

Now, we state the following fundamental concept of our paper.

Definition 2.4. A semigroup S is called semi-abundant if the following conditions hold:

- (i) Each $\widetilde{\mathcal{L}}$ -class and each $\widetilde{\mathcal{R}}$ -class of S contains idempotents.
- (ii) $\widetilde{\mathcal{L}}$ is a right congruence and $\widetilde{\mathcal{R}}$ is a left congruence on *S*, respectively.

A semi-abundant semigroup *S* is *quasi-Ehresmann* if its idempotents form a subsemigroup of *S*. Obviously, regular semigroups are semi-abundant, and orthodox semigroups are quasi-Ehresmann semigroups. Furthermore, a semi-abundant semigroup *S* is quasi-Ehresmann if and only if *RegS* is an orthodox subsemigroup of *S*. Let *S* be a semi-abundant semigroup. For $\mathcal{K} \in {\mathcal{L}, \mathcal{R}}$ and $a \in S$, we use \widetilde{K}_a to denote the $\widetilde{\mathcal{K}}$ -class of *S* containing *a*.

Notation 2.5. Let *S* be a **quasi-Ehresmann semigroup**. We use a^{\dagger} and a^{*} to denote the typical idempotents contained in \widetilde{R}_{a} and \widetilde{L}_{a} for $a \in S$, respectively.

Let *S* be a quasi-Ehresmann semigroup. Denote the \mathcal{D} -class of E(S) containing the element $e \in E(S)$ by E(e). Define the binary relation δ on *S* as follows:

 $a\delta b$ if and only if b = eaf for some $e \in E(a^{\dagger})$ and $f \in E(a^{*})$.

On the relation δ on a quasi-Ehresmann semigroup *S*, we have the results below.

Lemma 2.6. Let S be a quasi-Ehresmann semigroup, $a, b \in S$ and b = eaf for some $e \in E(a^{\dagger})$ and $f \in E(a^{\ast})$. Then

- (1) $E(a^{\dagger}) = E(b^{\dagger})$ and $E(a^{*}) = E(b^{*})$ for any b^{\dagger} and b^{*} .
- (2) δ is an equivalent relation on *S*.
- (3) $e\widetilde{\mathcal{R}}b\widetilde{\mathcal{L}}f$.
- (4) $\widetilde{\mathcal{H}} \cap \delta$ is the identity relation on *S*.

Proof. (1) By the hypothesis, we have $E(e) = E(a^{\dagger})$ and $E(f) = E(a^{\ast})$. Furthermore, we also obtain eb = b and bf = b. Since $b\tilde{\mathcal{R}}b^{\dagger}$ and $b\tilde{\mathcal{L}}b^{\ast}$, it follows that $eb^{\dagger} = b^{\dagger}$ and $b^{\ast}f = b^{\ast}$. This implies that $E(b^{\dagger}) \leq E(e) = E(a^{\dagger})$ and $E(b^{\ast}) \leq E(f) = E(a^{\ast})$. On the other hand, we have

$$a = a^{\dagger}aa^{*} = a^{\dagger}ea^{\dagger}aa^{*}fa^{*} = a^{\dagger}(ea^{\dagger}aa^{*}f)a^{*} = a^{\dagger}(eaf)a^{*} = a^{\dagger}ba^{*} = (a^{\dagger}b^{\dagger})b(b^{*}a^{*}).$$

Observe that $a^{\dagger}b^{\dagger} \in E(b^{\dagger})$ and $b^*a^* \in E(b^*)$, by the above discussions, it follows that $E(a^{\dagger}) \leq E(a^{\dagger}b^{\dagger}) = E(b^{\dagger})$ and $E(a^*) \leq E(b^*a^*) = E(b^*)$. Thus, $E(a^{\dagger}) = E(b^{\dagger})$ and $E(a^*) = E(b^*)$.

(2) Since $a = a^{\dagger}aa^{*}$ for all $a \in S$, δ is reflexive. Moreover, by the proof of item (1), it follows that δ is symmetric. Finally, let $a\delta b$, $b\delta c$ and

$$b = eaf, c = gbh, e \in E(a^{\dagger}), f \in E(a^{*}), g \in E(b^{\dagger}), h \in E(b^{*}).$$

By item (1), we have $E(a^{\dagger}) = E(b^{\dagger}), E(a^{*}) = E(b^{*})$. This implies that c = (ge)a(fh) and $ge \in E(a^{\dagger}), fh \in E(a^{*})$ whence $a\delta c$. Therefore, δ is transitive.

(3) Let $k \in E(S)$ and kb = b. Then keaf = eaf. This implies that

$$kea = keaa^* = keaa^*fa^* = keafa^* = eafa^* = eaa^*fa^* = eaa^* = eaaa^* = eaaa^* = eaa^* = eaa^* = eaaa^* = eaaa^* = eaaa^* = eaaa$$

Since $a\widetilde{R}a^{\dagger}$ and \widetilde{R} is a left congruence, we have $ea\widetilde{R}ea^{\dagger}$ and so $kea^{\dagger} = ea^{\dagger}$. Thus,

$$ke = kea^{\dagger}e = ea^{\dagger}e = e$$

by the fact that $e \in E(a^{\dagger})$. By Lemma 2.3, $e\tilde{\mathcal{R}}b$. Dually, $b\tilde{\mathcal{L}}f$.

(4) If $a, b \in S$ and $a(\widetilde{\mathcal{H}} \cap \delta)b$, then b = eaf for some $e \in E(a^{\dagger})$ and $f \in E(a^{*})$. This implies that

$$b = a^{\dagger}ba^{*} = a^{\dagger}eafa^{*} = a^{\dagger}ea^{\dagger}aa^{*}fa^{*} = a^{\dagger}aa^{*} = a,$$

as required. \Box

A semi-abundant subsemigroup U of a semi-abundant semigroup S is called a ~-subsemigroup of S if

$$\widetilde{\mathcal{L}}(U) = \widetilde{\mathcal{L}}(S) \cap (U \times U), \widetilde{\mathcal{R}}(U) = \widetilde{\mathcal{R}}(S) \cap (U \times U).$$

It is easy to see that a semi-abundant subsemigroup *U* of a semi-abundant semigroup *S* is a ~-subsemigroup if and only if there exist *e*, $f \in E(U)$ such that $e\mathcal{L}x$ and $f\mathcal{R}x$ in *S* for all $x \in U$.

Now, let *S* be a semi-abundant semigroup and *S*[°] a quasi-Ehresmann ~-subsemigroup of *S*. For any $x \in S$, denote

$$\Omega_{S^{\circ}}(x) = \{(e, \overline{x}, f) \in E(S) \times S^{\circ} \times E(S) | x = e\overline{x}f, e\mathcal{L}\overline{x}^{\dagger}, f\mathcal{R}\overline{x}^{*} \text{ for some } \overline{x}^{\dagger}, \overline{x}^{*} \in E(S^{\circ})\}$$

and

$$\Gamma_{S^{\circ}}(x) = \{\overline{x} | (e, \overline{x}, f) \in \Omega_{S^{\circ}}(x) \}, I_{S^{\circ}}(x) = \{e | (e, \overline{x}, f) \in \Omega_{S^{\circ}}(x) \},$$
$$\Lambda_{S^{\circ}}(x) = \{f | (e, \overline{x}, f) \in \Omega_{S^{\circ}}(x) \}, I_{S^{\circ}} = \bigcup_{x \in S} I_{S^{\circ}}(x), \Lambda_{S^{\circ}} = \bigcup_{x \in S} \Lambda_{S^{\circ}}(x).$$

For the sake of simplicity, if no confusion, we shall use Ω_x , Γ_x , I_x , Λ_x , I and Λ to denote $\Omega_{S^\circ}(x)$, $\Gamma_{S^\circ}(x)$, $I_{S^\circ}(x)$, $\Lambda_{S^\circ}(x)$, $I_{S^\circ}(x)$, I_{S

Lemma 2.7. Let S be a semi-abundant semigroup and S° a quasi-Ehresmann ~-subsemigroup of S.

$$(1) I = \{e \in E | (\exists e^{\circ} \in E(S^{\circ})) e \mathcal{L}e^{\circ}\}, \Lambda = \{f \in E | (\exists f^{\circ} \in E(S^{\circ})) f \mathcal{R}f^{\circ}\};$$

(2) $I \cap \Lambda = E(S^{\circ}), IE(S^{\circ}) \cup E(S^{\circ})\Lambda \subseteq RegS.$

Proof. (1) Let $e \in I$. Then, there exist $x \in S, \bar{x} \in S^{\circ}$ and $f \in E(S)$ such that $(e, \bar{x}, f) \in \Omega_x$. Thus, $e\mathcal{L}\bar{x}^{\dagger}$ for some $\bar{x}^{\dagger} \in E(S^{\circ})$. Conversely, if $e \in E(S)$ and $e\mathcal{L}e^{\circ} \in E(S^{\circ})$, then $(e, e^{\circ}, e^{\circ}) \in \Omega_e$, this shows that $e \in I$. A similar argument holds for Λ .

(2) By (1), $E(S^{\circ}) \subseteq I \cap \Lambda$. If $e \in I \cap \Lambda$, again by (1), there exist $e^{\circ}, e^{*} \in E(S^{\circ})$ such that $e^{\circ} \mathcal{L}e^{\mathcal{R}}e^{*}$, which leads to $e = e^{*}e^{\circ} \in E(S^{\circ})$ by Lemma 2.1 (2). Let $e \in I$ and $f^{\circ} \in E(S^{\circ})$. Then, there exists $e^{\circ} \in E(S^{\circ})$ such that $e\mathcal{L}e^{\circ}$. Hence, $ef^{\circ}\mathcal{L}e^{\circ}f^{\circ} \in E(S^{\circ})$. This implies that $IE(S^{\circ}) \subseteq RegS$. Dually, $E(S^{\circ})\Lambda \subseteq RegS$. \Box

In the following three lemmas, we always assume that *S* is a semi-abundant semigroup and S° is a quasi-Ehresmann ~-subsemigroup of *S*.

Lemma 2.8. If $x \in S$, $(e, \bar{x}, f) \in \Omega_x$ and $e\mathcal{L}\bar{x}^{\dagger}$, $f\mathcal{R}\bar{x}^*$ for some \bar{x}^{\dagger} and \bar{x}^* in $E(S^\circ)$, then $\bar{x} = \bar{x}^{\dagger}x\bar{x}^*$ and $e\tilde{\mathcal{R}}x\tilde{\mathcal{L}}f$. In particular, if $x \in \operatorname{Reg}S$, we have $e\mathcal{R}x\mathcal{L}f$.

Proof. By hypothesis, $x = e\bar{x}f$. This shows that ex = x. Now, let $g \in E(S)$ and gx = x. Then $ge\bar{x}f = e\bar{x}f$ whence

$$ge\bar{x} = ge\bar{x}\bar{x}^* = ge\bar{x}f\bar{x}^* = e\bar{x}f\bar{x}^* = e\bar{x}.$$

Since $\bar{x}\tilde{R}\bar{x}^{\dagger}$ and \tilde{R} is a left congruence on *S*, it follows that $e\bar{x}\tilde{R}e\bar{x}^{\dagger} = e$. In view of the fact that $ge\bar{x} = e\bar{x}$, we have ge = e. By Lemma 2.3, $e\tilde{R}x$. Dually, we have $x\tilde{L}f$. Furthermore, we have $\bar{x}^{\dagger}x\bar{x}^{*} = \bar{x}^{\dagger}e\bar{x}f\bar{x}^{*} = \bar{x}$. \Box

988

Lemma 2.9. If $x, y \in S^{\circ}$ and $z \in S$ such that $x \tilde{\mathcal{L}} z \tilde{\mathcal{R}} y$ and $\Gamma_z \neq \emptyset$. Then $z \in S^{\circ}$. In particular, if $x \tilde{\mathcal{H}} z, \Gamma_z \neq \emptyset$ and $x \in S^{\circ}$, then $z \in S^{\circ}$.

Proof. Let $x^* \tilde{\mathcal{L}} x \tilde{\mathcal{L}} x \tilde{\mathcal{R}} y \tilde{\mathcal{R}} y^{\dagger}$ for some $x^*, y^{\dagger} \in E(S^{\circ})$. Let $(e, \bar{z}, f) \in \Omega_z$ and $\bar{z}^* \mathcal{R} f$ for some \bar{z}^* in $E(S^{\circ})$. Then, by Lemma 2.8, $f \tilde{\mathcal{L}} z$. This implies that $\bar{z}^* \mathcal{R} f \mathcal{L} x^*$. By Lemma 2.1 (2), we have $\bar{z}^* \mathcal{L} x^* \bar{z}^* \mathcal{R} x^*$. Since $\bar{z}^* x^*, x^* \bar{z}^* \in E(S^{\circ})$ and $f \in E(S)$, by Lemma 2.1 (2) again, $f \mathcal{H} \bar{z}^* x^*$ and so $f = \bar{z}^* x^* \in S^{\circ}$. Dually, $e \in S^{\circ}$. Hence, $z = e\bar{z}f \in S^{\circ}$. \Box

Lemma 2.10. For any $x \in S$ and $\bar{x} \in \Gamma_x$, $x \in RegS$ if and only if $\bar{x} \in RegS^\circ$. In this case, $I_x = \{xx^\circ | x^\circ \in V_{S^\circ}(x)\}$, $\Lambda_x = \{x^\circ x | x^\circ \in V_{S^\circ}(x)\}$ and $\Gamma_x = V_{S^\circ}(V_{S^\circ}(x))$.

Proof. Let $x \in RegS$, $(e, \bar{x}, f) \in \Omega_x$ and $e\mathcal{L}\bar{x}^{\dagger}$, $f\mathcal{R}\bar{x}^*$ for some $\bar{x}^{\dagger}, \bar{x}^* \in E(S^\circ)$. Then, by Lemma 2.8, $f\mathcal{L}x\mathcal{R}e$ and $\bar{x} = \bar{x}^{\dagger}x\bar{x}^*$. This deduces that there exist $x' \in V(x)$ and $x'' \in V(x')$ such that xx' = e, x'x = f and $x'x'' = \bar{x}^*, x''x' = \bar{x}^{\dagger}$ from Lemma 2.1 (1). Moreover, by Lemma 2.1 (2), we have the following egg-box diagram:

$x = e\bar{x}f$	е	$x\bar{x}^*$, $e\bar{x}$
f	<i>x'</i>	$ar{x}^*$
	\bar{x}^{\dagger}	$\bar{x} = \bar{x}^{\dagger} x \bar{x}^{*}, \ x^{\prime \prime}$

Observe that x = xx'x''x'x = ex''f, it follows that

$$\bar{x} = \bar{x}^{\dagger} x \bar{x}^{*} = \bar{x}^{\dagger} e x^{\prime \prime} f \bar{x}^{*} = \bar{x}^{\dagger} x^{\prime \prime} \bar{x}^{*} = x^{\prime \prime}$$

Since $\bar{x}^* \mathcal{R} x' \mathcal{L} \bar{x}^\dagger$ and $\bar{x}^*, \bar{x}^\dagger \in S^\circ$, it follows that $x' \in S^\circ$ by Lemma 2.9. This implies that $x' \in V_{S^\circ}(\bar{x})$ and so $\bar{x} \in RegS^\circ$. Conversely, let $\bar{x} \in RegS^\circ$. By very similar method, we can see that $x \in RegS$.

On the other hand, by the discussions above, for all $x \in RegS$ and $(e, \bar{x}, f) \in \Omega_x$, we have e = xx' and f = x'x for some $x' \in V_{S^\circ}(x) \cap V_{S^\circ}(\bar{x})$. This implies that

$$I_x \subseteq \{xx'|x' \in V_{S^\circ}(x)\}, \Lambda_x \subseteq \{x'x|x' \in V_{S^\circ}(x)\}, \Gamma_x \subseteq V_{S^\circ}(V_{S^\circ}(x))$$

for all $x \in RegS$.

Now, let $x \in RegS$, $x' \in V_{S^{\circ}}(x)$ and $x'' \in V_{S^{\circ}}(x')$. Since

$$xx'\mathcal{L}x''x'\widetilde{\mathcal{R}}x'', x'x\mathcal{R}x'x''\widetilde{\mathcal{L}}x'', x = (xx')x''(x'x), x''x', x'x'' \in E(S^{\circ}),$$

it follows that $(xx', x'', x'x) \in \Omega_x$, whence $xx' \in I_x$, $x'x \in \Lambda_x$ and $x'' \in \Gamma_x$. Therefore,

$$\{xx'|x' \in V_{S^{\circ}}(x)\} \subseteq I_x, \{x'x|x' \in V_{S^{\circ}}(x)\} \subseteq \Lambda_x, V_{S^{\circ}}(V_{S^{\circ}}(x)) \subseteq \Gamma_x$$

Thus, the three equalities in this lemma hold. \Box

3. Quasi-Ehresmann Transversals

This section will explore some properties of semi-abundant semigroups with quasi-Ehresmann transversals. We first give the following concept, which is inspired by Lemma 2.2 (2) and Lemma 2.10.

Definition 3.1. Let *S* be a semi-abundant semigroup and S° a quasi-Ehresmann ~-subsemigroup of *S*. Then S° is called a quasi-Ehresmann transversal of *S* if the following conditions hold:

- (*i*) $\Gamma_x \neq \emptyset$ for all $x \in S$;
- (*ii*) *is* \in *I* and "*si* \in *ReqS* \Rightarrow *si* \in *E*(*S*)" *for all i* \in *I* and *s* \in *E*(*S*°);
- (iii) $s\lambda \in \Lambda$ and " $\lambda s \in RegS \Rightarrow \lambda s \in E(S)$ " for all $\lambda \in \Lambda$ and $s \in E(S^{\circ})$.

We first observe that quasi-Ehresmann transversals of semi-abundant semigroups are indeed generalizations of orthodox transversals of regular semigroups. **Theorem 3.2.** Let *S* be a regular semigroup and S° a subsemigroup of *S*. Then S° is an orthodox transversal of *S* if and only if S° is a quasi-Ehresmann transversal of *S*.

Proof. Let S° be an orthodox transversal of S. Then S° is an orthodox subsemigroup of S and certainly a quasi-Ehresmann ~-subsemigroup of S. Observe that $(xx', x'', x'x) \in \Omega_x$ for every $x \in S, x' \in V_{S^{\circ}}(x)$ and $x'' \in V_{S^{\circ}}(x')$. This shows that $\Gamma_x \neq \emptyset$ for any $x \in S$, and so the condition (i) in Definition 3.1 holds. On the other hand, by Lemma 2.10, we have

$$I = \{xx' | x' \in V_{S^{\circ}}(x), x \in S\}, \Lambda = \{x'x | x' \in V_{S^{\circ}}(x), x \in S\}.$$

By Lemma 2.2 (2), the conditions (ii) and (iii) in Definition 3.1 are satisfied, Thus, S° is a quasi-Ehresmann transversal of *S*.

Conversely, let S° be a quasi-Ehresmann transversal of S. By Lemma 2.10 again,

$$I_{x} = \{xx' | x' \in V_{S^{\circ}}(x)\}, \Lambda_{x} = \{x'x | x' \in V_{S^{\circ}}(x)\}, \Gamma_{x} = V_{S^{\circ}}(V_{S^{\circ}}(x))$$

for all $x \in RegS$. Observe that *S* is regular, it follows that S° is an orthodox transversal of *S* from Definition 3.1 and Lemma 2.2 (2). \Box

In the remainder of this section, we always assume that *S* is a semi-abundant semigroup with a quasi-Ehresmann transversal *S*°. In the sequel, we characterize the relations $\tilde{\mathcal{L}}$ and $\tilde{\mathcal{R}}$ on *S*.

Theorem 3.3. Let $x, y \in S$.

- (1) $x \tilde{\mathcal{R}} y$ if and only if $I_x = I_y$;
- (2) $x \tilde{\mathcal{L}} y$ if and only if $\Lambda_x = \Lambda_y$.

Proof. (1) Assume that $I_x = I_y$ and $e \in I_x = I_y$. By Lemma 2.8, we have $x\tilde{R}e\tilde{R}y$ and so $x\tilde{R}y$. Now, let $x\tilde{R}y$, $(e, \bar{x}, f) \in \Omega_x$ and $(g, \bar{y}, h) \in \Omega_y$. Then $e\mathcal{L}\bar{x}^{\dagger}$, $fR\bar{x}^{\star}$ and $g\mathcal{L}\bar{y}^{\dagger}$, $hR\bar{y}^{\star}$ for some \bar{x}^{\dagger} , \bar{x}^{\star} and \bar{y}^{\dagger} , \bar{y}^{\star} in $E(S^\circ)$. By Lemma 2.8, $e\tilde{R}x\tilde{R}y\tilde{R}q$ and so eRq. Then, by Definition 3.1 (ii) and Lemma 2.1 (2), we have the following graph:

$e = g\bar{x}^{\dagger} \in E(S)$	$g = e\bar{y}^{\dagger} \in E(S)$
\bar{x}^{\dagger}	$\bar{x}^{\dagger}\bar{y}^{\dagger} = \bar{x}^{\dagger}g \in E(S)$
$\bar{y}^{\dagger}\bar{x}^{\dagger} = \bar{y}^{\dagger}e \in E(S)$	$ar{y}^{\dagger}$

Hence,

$$y = q\bar{y}h = (e\bar{y}^{\dagger})\bar{y}h = e(\bar{y}^{\dagger}\bar{y})h = e\bar{y}h = (e\bar{x}^{\dagger})\bar{y}h = e(\bar{x}^{\dagger}\bar{y})h$$

We assert that $\bar{x}^{\dagger}\tilde{\mathcal{R}}\bar{x}^{\dagger}\bar{y}\tilde{\mathcal{L}}\bar{y}^{*}$. In fact, let $m \in E(S)$ and $m\bar{x}^{\dagger}\bar{y} = \bar{x}^{\dagger}\bar{y}$. Observe that $\bar{y}\tilde{\mathcal{R}}\bar{y}^{\dagger}$ and $\tilde{\mathcal{R}}$ is a left congruence on S, it follows that $\bar{x}^{\dagger}\bar{y}\tilde{\mathcal{R}}\bar{x}^{\dagger}\bar{y}^{\dagger}$. By Lemma 2.3, we have $m\bar{x}^{\dagger}\bar{y}^{\dagger} = \bar{x}^{\dagger}\bar{y}^{\dagger}$ whence $m\bar{x}^{\dagger} = m\bar{x}^{\dagger}\bar{y}^{\dagger}\bar{x}^{\dagger} = \bar{x}^{\dagger}\bar{y}^{\dagger}\bar{x}^{\dagger} = \bar{x}^{\dagger}$. Observe that $\bar{x}^{\dagger}(\bar{x}^{\dagger}\bar{y}) = \bar{x}^{\dagger}\bar{y}$, it follows that $\bar{x}^{\dagger}\tilde{\mathcal{R}}\bar{x}^{\dagger}\bar{y}$ by Lemma 2.3 again. On the other hand, if $n \in E(S)$ and $\bar{x}^{\dagger}\bar{y} = \bar{x}^{\dagger}\bar{y}n$, then

$$\bar{y} = \bar{y}^{\dagger} \bar{x}^{\dagger} (\bar{y}^{\dagger} \bar{y}) = \bar{y}^{\dagger} \bar{x}^{\dagger} (\bar{y}^{\dagger} \bar{y}) n = \bar{y} n.$$

By $\bar{y}\tilde{\mathcal{L}}\bar{y}^*$ and the dual of Lemma 2.3, we have $\bar{y}^* = \bar{y}^*n$. Observe that $\bar{x}^{\dagger}\bar{y}\bar{y}^* = \bar{x}^{\dagger}\bar{y}$, by the dual of Lemma 2.3 again, $\bar{x}^{\dagger}\bar{y}\tilde{\mathcal{L}}\bar{y}^*$. By the above discussions, we have $e\mathcal{L}\bar{x}^{\dagger}\tilde{\mathcal{R}}\bar{x}^{\dagger}\bar{y}$ and $\bar{x}^{\dagger}\bar{y}\tilde{\mathcal{L}}\bar{y}^*\mathcal{R}h$. This implies that $(e, \bar{x}^{\dagger}\bar{y}, h) \in \Omega_y$ and so $e \in I_y$. Hence, $I_x \subseteq I_y$. Dually, $I_y \subseteq I_x$.

(2) The is the dual of (1). \Box

Now, we investigate some properties of Γ_x for $x \in S$.

Theorem 3.4. Let $x \in S$ and $(e, \overline{x}, f) \in \Omega_x$.

- (1) $\Gamma_x = \{\overline{y} \in S^\circ | \overline{y} \delta \overline{x} \}.$
- (2) $\Gamma_{x_1} = \Gamma_{x_2}$ if and only if $\Gamma_{x_1} \cap \Gamma_{x_2} \neq \emptyset$ for all $x_1, x_2 \in S$.

(3) $\Gamma_x \cap E(S^\circ) \neq \emptyset$ implies that $\Gamma_x \subseteq E(S^\circ)$ and $V_{S^\circ}(x) \subseteq E(S^\circ)$.

Proof. (1) Let $(e_1, \overline{y}, f_1) \in \Omega_x$. By Lemma 2.8, we can let

$$ar{x}^{\dagger}\mathcal{L}e\mathcal{R}e_{1}\mathcal{L}ar{y}^{\dagger},\ ar{x}^{*}\mathcal{R}f\mathcal{L}f_{1}\mathcal{R}ar{y}^{*}$$

for some \bar{x}^{\dagger} , \bar{y}^{\dagger} , \bar{x}^{*} and \bar{y}^{*} in $E(S^{\circ})$. In view of Lemma 2.1, $\bar{x}^{\dagger}e_{1}\mathcal{L}e_{1}$ and $f_{1}\bar{x}^{*}\mathcal{L}\bar{x}^{*}$.

е	e_1		*	~*
\overline{r}^{\dagger}	$\overline{r}^{\dagger}\rho_{1}$	f	x	fy
-+-+		f_1	$f_1\overline{x}^*$	\overline{y}^*
$y^{\cdot}\bar{x}^{\cdot}$	y'	P		· · · · · · · · · · · · · · · · · · ·

By Definition 3.1 (ii),(iii), we can obtain that $\bar{x}^{\dagger}e_1, f_1\bar{x}^* \in E(S)$. Again by Lemma 2.1, $\bar{x}^{\dagger}e_1 = \bar{x}^{\dagger}\bar{y}^{\dagger}$ and $f_1\bar{x}^* = \bar{y}^*\bar{x}^*$. Thus, by Lemma 2.8,

$$\bar{x} = \bar{x}^{\dagger} x \bar{x}^{*} = \bar{x}^{\dagger} e_1 \bar{y} f_1 \bar{x}^{*} = \bar{x}^{\dagger} \bar{y}^{\dagger} \bar{y} \bar{y}^{*} \bar{x}^{*} = \bar{x}^{\dagger} \cdot \bar{y} \cdot \bar{x}^{*},$$

where $\bar{x}^{\dagger} \in E(\bar{y}^{\dagger})$ and $\bar{x}^* \in E(\bar{y}^*)$. This implies that $\bar{x}\delta\bar{y}$.

On the other hand, if $\overline{y} \in S^{\circ}$, $\overline{y}\delta\overline{x}$ and $e\mathcal{L}\overline{x}^{\dagger}$ for some \overline{x}^{\dagger} in $E(S^{\circ})$, then there exist $i \in E(\overline{y}^{\dagger}), \lambda \in E(\overline{y}^{\ast})$ such that $\overline{x} = i\overline{y}\lambda$ for some (all) \overline{y}^{\dagger} and \overline{y}^{\ast} in $E(S^{\circ})$ (Notice that $i, \lambda \in E(S^{\circ})$). By Lemma 2.6, $E(\overline{x}^{\dagger}) = E(\overline{y}^{\dagger})$. According to Lemma 2.1 (1), we have

е	ei y †	ei
\overline{x}^{\dagger}	$\overline{x}^{\dagger}\overline{y}^{\dagger}$	
$\overline{y}^{\dagger}\overline{x}^{\dagger}$	\overline{y}^{\dagger}	$\overline{y}^{\dagger}i$
$i\overline{y}^{\dagger}\overline{x}^{\dagger}$	$i\overline{y}^{\dagger}$	i

Since $e \in I$ and $i\bar{y}^{\dagger} \in E(S^{\circ})$, $ei\bar{y}^{\dagger} \in I \subseteq E(S)$ by Definition 3.1 (ii). Thus, $ei\bar{y}^{\dagger}\mathcal{L}\bar{y}^{\dagger}$. Dually, we can obtain $\bar{y}^{\ast}\lambda f \in E(S)$ and $\bar{y}^{\ast}\mathcal{R}\bar{y}^{\ast}\lambda f$. Observe that

$$x = e\bar{x}f = ei\bar{y}\lambda f = (ei\bar{y}^{\mathsf{T}})\bar{y}(\bar{y}^{*}\lambda f),$$

 $(ei\overline{y}^{\dagger}, \overline{y}, \overline{y}^{*}\lambda f) \in \Omega_{x} \text{ and } \overline{y} \in \Gamma_{x}.$

(2) This is a direct consequence of item (1) and Lemma 2.6 (2).

(3) Let $\bar{x} \in \Gamma_x$ and $e^\circ \in \Gamma_x \cap E(S^\circ)$. Then, $e^\circ \delta \bar{x}$ by (1). Hence, there exist $k, l \in E(e^\circ)$ such that $\bar{x} = ke^\circ l$, which implies that $\bar{x} \in E(S^\circ)$. On the other hand, by Lemma 2.10, in this case,

$$\Gamma_x = V_{S^\circ}(V_{S^\circ}(x)) \subseteq E(S^\circ).$$

Since $RegS^{\circ}$ is orthodox, we have $V_{S^{\circ}}(x) \subseteq E(S^{\circ})$. \Box

The following theorem shows that quasi-Ehresmann transversal have transitivity.

Theorem 3.5. Let *S* be a semi-abundant semigroup with a quasi-Ehresmann transversal S° and S^{*} a quasi-Ehresmann transversal of S° . Then S^{*} is a quasi-Ehresmann transversal of *S*.

Proof. By Lemma 2.7, $I_{S^{\circ}} = \{e \in E(S) | (\exists e^{\circ} \in E(S^{\circ})) e \mathcal{L}e^{\circ}\}$. Let $x \in S$ and $(e_1, x_1, f_1) \in \Omega_{S^{\circ}}(x)$ with $e_1 \mathcal{L}x_1^{\dagger} \tilde{\mathcal{R}} x_1$ and $x_1^{\dagger} \in E(S^{\circ})$. Let $(e_2, x_2, f_2) \in \Omega_{S^{\circ}}(x_1)$ such that (In view of Lemma 2.8)

$$x_1^{\dagger}\tilde{\mathcal{R}}x_1\tilde{\mathcal{R}}e_2\mathcal{L}x_2^{\dagger}\tilde{\mathcal{R}}x_2, \ x_1\tilde{\mathcal{L}}f_2\mathcal{R}x_2^{*}\tilde{\mathcal{L}}x_2, \ x_2^{\dagger}, x_2^{*} \in E(S^*), \ e_2, \ f_2 \in E(S^\circ).$$

Then $e_1 \mathcal{L} x_1^{\dagger} \mathcal{R} e_2 \mathcal{L} x_2^{\dagger}$. By Lemma 2.1, $e_1 e_2 \mathcal{L} x_2^{\dagger}$. On the other hand, since $e_1 \in I_{S^\circ}$ and $e_2 \in E(S^\circ)$, $e_1 e_2 \in I_{S^\circ} \subseteq E(S)$ by Definition 3.1 (ii). Dually, we can obtain that $f_2 f_1 \in E(S)$ and $f_2 f_1 \mathcal{R} x_2^*$. Observe that $x = e_1 x_1 f_1 = (e_1 e_2) x_2(f_2 f_1)$, it follows that $(e_1 e_2, x_2, f_2 f_1) \in \Omega_{S^\circ}(x)$. This implies that $\Gamma_{S^\circ}(x) \neq \emptyset$ for all $x \in S$.

991

On the other hand, by Lemma 2.7 again, we have

$$I_{S^*} = \{ e \in E(S) | (\exists e^* \in E(S^*)) e \mathcal{L}e^* \}, \Lambda_{S^*} = \{ f \in E(S) | (\exists f^* \in E(S^*)) f \mathcal{R}f^* \}.$$

Let $s, e^* \in E(S^*) \subseteq E(S^\circ)$ and $e^* \mathcal{L}e \in I_{S^*} \subseteq I_{S^\circ}$. Apply Definition 3.1 (ii) to $I_{S^\circ}, es \in I_{S^\circ} \subseteq E(S)$. Observe that $es \mathcal{L}e^*s \in E(S^*)$, it follows that $es \in I_{S^*}$. On the other hand, let $se \in RegS$. Apply Definition 3.1 (ii) to I_{S° again, $se \in E(S)$. Hence, Definition 3.1 (ii) for I_{S^*} is satisfied. Dually, we can prove Definition 3.1 (iii) for Λ_{S^*} also holds. Thus, S^* is a quasi-Ehresmann transversal of S. \Box

From Lemma 2.7, we have $IE(S^{\circ}) \cup E(S^{\circ})\Lambda \subseteq RegS$. In the following, we shall give some equivalent conditions such that $E(S^{\circ})I \cup \Lambda E(S^{\circ}) \subseteq RegS$. We give the lemma below firstly.

Lemma 3.6. Let $a, b \in RegS$, $e, f \in I$ and $g, h \in \Lambda$. Then

- (1) If $a^{\circ} \in V_{S^{\circ}}(a)$, then $V_{S^{\circ}}(a) = V_{S^{\circ}}(a^{\circ}a)a^{\circ}V_{S^{\circ}}(aa^{\circ})$;
- (2) If $e\mathcal{L}f$, then $V_{S^{\circ}}(e) = V_{S^{\circ}}(f)$;
- (3) If gRh, then $V_{S^{\circ}}(g) = V_{S^{\circ}}(h)$;
- (4) If $V_{S^{\circ}}(a) \cap V_{S^{\circ}}(b) \neq \emptyset$, then $V_{S^{\circ}}(a) = V_{S^{\circ}}(b)$.

Proof. (1) Let $a^* \in V_{S^\circ}(a)$ and $a^{\circ\circ} \in V_{S^\circ}(a^\circ)$. Then, by Lemma 2.1 (2)

 $a^{\circ\circ}a^{\circ}Ra^{\circ\circ}a^{\circ}aa^{*}La^{*}Ra^{*}aa^{\circ}a^{\circ\circ}La^{\circ}a^{\circ\circ}.$

By Lemma 2.9, $a^{\circ\circ}a^{\circ}aa^{*}$, $a^{*}aa^{\circ}a^{\circ\circ} \in S^{\circ}$. The remainder is similar to the proof of Lemma 2.4 in Chen [4].

(2) Let $t \in V_{S^{\circ}}(e)$. By Lemma 2.7, we may let $e\mathcal{L}f\mathcal{L}h$ for some $h \in E(S^{\circ})$. Then, $(e, h, h) \in \Omega_e$ and so $h \in \Gamma_e \cap E(S^{\circ})$. By (3) of Theorem 3.4, $t \in V_{S^{\circ}}(e) \subseteq E(S^{\circ})$. In view of Definition 3.1 (ii), we have $ft \in I$. Observe that $t\mathcal{R}te\mathcal{L}e\mathcal{L}f$, it follows that $f\mathcal{R}ft\mathcal{L}t$ by Lemma 2.1. Since $ft \in I \subseteq E(S)$, by Lemma 2.1 again, $tf\mathcal{H}te \in E(S)$. This implies that $tf \in RegS$. By Definition 3.1 (ii), $tf \in E(S)$. Hence, tf = te.

е	et
f	$ft \in I$
tf = te	t
h	

This implies that tft = tet = t and ftf = (ft)f = f. Therefore, $t \in V_{S^{\circ}}(f)$ and so $V_{S^{\circ}}(e) \subseteq V_{S^{\circ}}(f)$. Dually, $V_{S^{\circ}}(f) \subseteq V_{S^{\circ}}(e)$.

(3) This is the dual of (2).

(4) Let $x \in V_{S^{\circ}}(a) \cap V_{S^{\circ}}(b)$. Then $ax \mathcal{L}bx$ and $xa \mathcal{R}xb$. In view of Lemma 2.10, we have $ax, bx \in I$ and $xa, xb \in \Lambda$. By (1), (2) and (3), we have

$$V_{S^{\circ}}(a) = V_{S^{\circ}}(xa)xV_{S^{\circ}}(ax) = V_{S^{\circ}}(xb)xV_{S^{\circ}}(bx) = V_{S^{\circ}}(b),$$

as required. \Box

Theorem 3.7. *The following conditions on S are equivalent:*

- (1) $(\forall u, v \in I \cup \Lambda)$ " $\{u, v\} \cap E(S^{\circ}) \neq \emptyset \Rightarrow \Gamma_{u}\Gamma_{v} \subseteq \Gamma_{uv}$ ";
- (2) $E(S^{\circ})I \subseteq E(S), \Lambda E(S^{\circ}) \subseteq E(S);$
- (3) $(\forall a, b \in RegS)$ " $\{a, b\} \cap S^{\circ} \neq \emptyset \Rightarrow V_{S^{\circ}}(b)V_{S^{\circ}}(a) \subseteq V_{S^{\circ}}(ab)$ ".

Proof. (1)*implies* (2). Let $i \in I, \lambda \in \Lambda$ and $s \in E(S^{\circ})$. By Definition 3.1 (ii) and (iii), it suffices to show $si, \lambda s \in RegS$. In fact, by Lemma 2.7, there exist $i^{\circ}, \lambda^{\circ} \in E(S^{\circ})$ such that $i^{\circ}\mathcal{L}i$ and $\lambda^{\circ}\mathcal{R}\lambda$. This implies that $(i, i^{\circ}, i^{\circ}) \in \Omega_i$ and $(\lambda^{\circ}, \lambda^{\circ}, \lambda) \in \Omega_{\lambda}$. Hence, $i^{\circ} \in \Gamma_i$ and $\lambda^{\circ} \in \Gamma_{\lambda}$. Clearly, $s \in \Gamma_s$. By (1), $si^{\circ} \in \Gamma_{si} \cap E(S^{\circ})$ and $\lambda^{\circ}s \in \Gamma_{\lambda s} \cap E(S^{\circ})$. In view of Lemma 2.10, we have $si, \lambda s \in RegS$.

(2) *implies* (3). Let $a \in RegS^{\circ}$ and $b \in RegS$. Take $a^{\circ} \in V_{S^{\circ}}(a)$ and $b^{\circ} \in V_{S^{\circ}}(b)$. Then $a^{\circ}a \in E(S^{\circ})$ and $bb^{\circ} \in I$ by Lemma 2.10. By (2) and Definition 3.1 (ii), we have

$$abb^{\circ}a^{\circ}ab = a(a^{\circ}abb^{\circ})(a^{\circ}abb^{\circ})b = aa^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}abb^{\circ}abb^{\circ}b = abb^{\circ}abb^{\circ}abb^{\circ}abb^{\circ}abb^{\circ}b = abb^{\circ}ab$$

and

$$b^{\circ}a^{\circ}abb^{\circ}a^{\circ} = b^{\circ}(bb^{\circ}a^{\circ}a)(bb^{\circ}a^{\circ}a)a^{\circ} = b^{\circ}bb^{\circ}a^{\circ}aa^{\circ} = b^{\circ}a^{\circ}.$$

Dually, we can prove the case for $a \in RegS$ and $b \in RegS^{\circ}$.

(3) *implies* (1). Let $u \in E(S^{\circ})$ and $v \in I \cup \Lambda$. Clearly, $u, v \in RegS$. Take

 $u^{\circ} \in V_{S^{\circ}}(u), u^{\circ \circ} \in V_{S^{\circ}}(u^{\circ}), v^{\circ} \in V_{S^{\circ}}(v), v^{\circ \circ} \in V_{S^{\circ}}(v^{\circ}).$

Then by (3), $v^{\circ}u^{\circ} \in V_{S^{\circ}}(uv)$. Since $RegS^{\circ}$ is orthodox, we have

 $u^{\circ\circ}v^{\circ\circ} \in V_{S^{\circ}}(u^{\circ})V_{S^{\circ}}(v^{\circ}) \subseteq V_{S^{\circ}}(v^{\circ}u^{\circ}) \subseteq V_{S^{\circ}}(V_{S^{\circ}}(uv)).$

Hence, by Lemma 2.10, $\Gamma_u \Gamma_v \subseteq \Gamma_{uv}$. Similarly, we can show the case for $v \in E(S^\circ)$ and $u \in I \cup \Lambda$. This implies that (1) holds. \Box

The following Theorem 3.8 yields that if Condition (1) of Theorem 3.7 is strengthened by removing $\{u, v\} \cap E(S^\circ) \neq \emptyset$, then *S* itself is quasi-Ehreshmann.

Theorem 3.8. *The following conditions on S are equivalent:*

- (1) $(\forall u, v \in I \cup \Lambda)$ $\Gamma_u \Gamma_v \subseteq \Gamma_{uv}$;
- (2) $\Lambda I, I\Lambda \subseteq E(S);$
- (3) *S* is quasi-Ehreshmann.

Proof. (1) *implies* (2). Let $i \in I$ and $\lambda \in \Lambda$. Then, by Lemma 2.7 (1), there exist $i^{\circ}, \lambda^{\circ} \in E(S^{\circ})$ such that $i \perp i^{\circ}$ and $\lambda \mathcal{R}\lambda^{\circ}$. This shows that $(i, i^{\circ}, i^{\circ}) \in \Omega_i$ and $(\lambda^{\circ}, \lambda^{\circ}, \lambda) \in \Omega_{\lambda}$. Hence, $i^{\circ} \in \Gamma_i$ and $\lambda^{\circ} \in \Gamma_{\lambda}$. By (1), $\lambda^{\circ}i^{\circ} \in \Gamma_{\lambda i} \cap E(S^{\circ})$. In view of Lemma 2.10, $\lambda i \in RegS$ and $\Gamma_{\lambda i} = V_{S^{\circ}}(V_{S^{\circ}}(\lambda i))$ whence $\lambda^{\circ}i^{\circ} \in V_{S^{\circ}}(\lambda i)$. Hence, there exists $(\lambda i)^{\circ} \in V_{S^{\circ}}(\lambda i) \cap V_{S^{\circ}}(\lambda^{\circ}i^{\circ})$. By Lemma 3.6 (4), $V_{S^{\circ}}(\lambda i) = V_{S^{\circ}}(\lambda^{\circ}i^{\circ})$. Noticing that $i^{\circ}\lambda^{\circ}, \lambda^{\circ}i^{\circ} \in V_{S^{\circ}}(\lambda^{\circ}i^{\circ})$, we have $\lambda^{\circ}i^{\circ}, i^{\circ}\lambda^{\circ} \in V_{S^{\circ}}(\lambda i)$. Thus,

$$\lambda i = \lambda i i^{\circ} \lambda^{\circ} \lambda i = \lambda i \lambda i \in E(S).$$

On the other hand, by similar arguments, we can obtain $\lambda^{\circ}i^{\circ} \in V_{S^{\circ}}(i\lambda)$. Hence,

$$i\lambda = i\lambda\lambda^{\circ}i^{\circ}i\lambda = i\lambda^{\circ}i^{\circ}\lambda.$$

Since $\lambda^{\circ} i^{\circ} \in V_{S^{\circ}}(\lambda i)$, this implies that

$$i\lambda i\lambda = i(\lambda^{\circ}i^{\circ}\lambda i\lambda^{\circ}i^{\circ})\lambda = i\lambda^{\circ}i^{\circ}\lambda = i\lambda \in E(S).$$

(2) *implies* (3). Let $a, b \in RegS$. Then, we can take $a^{\circ} \in V_{S^{\circ}}(a)$ and $b^{\circ} \in V_{S^{\circ}}(b)$ by Lemma 2.10. We assert $b^{\circ}a^{\circ} \in V_{S^{\circ}}(ab)$. In fact, since $bb^{\circ} \in I$ and $a^{\circ}a \in \Lambda$ by Lemma 2.10, by (2),

$$b^{\circ}a^{\circ}abb^{\circ}a^{\circ} = b^{\circ}(bb^{\circ}a^{\circ}a)(bb^{\circ}a^{\circ}a)a^{\circ} = b^{\circ}a^{\circ}$$

and

$$abb^{\circ}a^{\circ}ab = a(a^{\circ}abb^{\circ})(a^{\circ}abb^{\circ})b = ab.$$

Hence, *RegS* is a regular subsemigroup of *S* and

$$V_{RegS^{\circ}}(b)V_{RegS^{\circ}}(a) \subseteq V_{RegS^{\circ}}(ab)$$

for each $a, b \in RegS$. It is clear that $RegS^{\circ}$ is a subsemigroup of RegS and $V_{RegS^{\circ}}(a) = V_{S^{\circ}}(a) \neq \emptyset$ for each $a \in RegS$. In view of Lemma 2.2 (1), RegS is orthodox. Thus, S is quasi-Ehreshmann.

(3) *implies* (1). Let $u, v \in I \cup \Lambda$. Then $u, v \in RegS$. Take

$$u^{\circ} \in V_{S^{\circ}}(u), u^{\circ \circ} \in V_{S^{\circ}}(u^{\circ}), v^{\circ} \in V_{S^{\circ}}(v), v^{\circ \circ} \in V_{S^{\circ}}(v^{\circ}).$$

By (3), *RegS* is orthodox. This implies $v^{\circ}u^{\circ} \subseteq V_{S^{\circ}}(uv)$. Hence,

$$u^{\circ\circ}v^{\circ\circ} \in V_{S^{\circ}}(u^{\circ})V_{S^{\circ}}(v^{\circ}) \subseteq V_{S^{\circ}}(v^{\circ}u^{\circ}) \subseteq V_{S^{\circ}}(V_{S^{\circ}}(uv)).$$

In view of Lemma 2.10, $\Gamma_u \Gamma_v \subseteq \Gamma_{uv}$. \Box

Let *S* be a semi-abundant semigroup and S° a quasi-Ehreshmann transversal of *S*. We shall say that S° is *strong* if one (equivalently, all) of the conditions in Theorem 3.7 holds. Obviously, orthodox transversals are strong quasi-Ehresmann transversals by Theorem 3.7 (3). However, quasi-Ehresmann transversals may not be strong in general. The following result illustrates this situation.

Example 3.9. (Example 2.7 in [5]) Let $S = \{e, g, h, w, f\}$ with the following multiplication table

	е	g	h	w	f
е	е	g	е	g	g
g	9	g	g	g	g
h	h	g	h	g	g .
w	w	g	w	g	g
f	9	g	w	w	f

Then, it is routine to check that S is a semi-abundant semigroup with a quasi-Ehresmann transversal $S^{\circ} = \{w, e, f, g\}$. In this case, $I = \{e, h, f, g\}$ and $f \in E(S^{\circ})$, but $fh = w \notin E(S)$.

Theorem 3.10. Let S be a semi-abundant semigroup with a strong quasi-Ehreshmann transversal S° and \overline{I} the subsemigroup generated by I. Then

- (1) For $i_k \in I$ and $i_k^\circ \in E(S^\circ)$ such that $i_k \mathcal{L}i_k^\circ$, where $k = 1, 2, \cdots, n$, we have $i_n^\circ i_{n-1}^\circ \cdots i_1^\circ \in V_{S^\circ}(i_1 i_2 \cdots i_n)$.
- (2) $E(S^{\circ})$ is an orthodox transversal of \overline{I} and \overline{I} is a subband of S.

Dually, we have a symmetrical result for Λ .

Proof. (1) Clearly, the result holds for the case n = 1. Now, we assume that the result holds for n = t - 1 and prove that it is also true for n = t. Let

$$i_1, i_2, \cdots, i_t \in I, \ x = i_1 i_2 \cdots i_t.$$

Then, by hypothesis, $i_t^{\circ} i_{t-1}^{\circ} \cdots i_2^{\circ} \in V_{S^{\circ}}(i_2 i_3 \cdots i_t)$, which shows that $i_2 i_3 \cdots i_t \in RegS$. Clearly, $i_1^{\circ} \in RegS^{\circ}$. By (3) of Theorem 3.7, we have $i_t^{\circ} i_{t-1}^{\circ} \cdots i_1^{\circ} \in V_{S^{\circ}}(i_1^{\circ} i_2 \cdots i_t)$. This yields $i_t^{\circ} i_{t-1}^{\circ} \cdots i_1^{\circ} \in V_{S^{\circ}}(x)$. Indeed, observe that $i_k \mathcal{L}i_{t,k}^{\circ} k = 1, 2, 3, \cdots, t$, it follows that

$$i_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ}xi_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ} = i_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ}(i_{1}^{\circ}i_{1}i_{2}\cdots i_{t})i_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ} = i_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ}(i_{1}^{\circ}i_{2}\cdots i_{t})i_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ} = i_{t}^{\circ}i_{t-1}^{\circ}\cdots i_{1}^{\circ}$$

and

$$x(i_t^{\circ}i_{t-1}^{\circ}\cdots i_1^{\circ})x = i_1(i_1^{\circ}i_2\cdots i_t)(i_t^{\circ}i_{t-1}^{\circ}\cdots i_1^{\circ})(i_1^{\circ}i_1i_2\cdots i_t) = i_1i_2\cdots i_t = x.$$

(2) By Lemma 2.7,

$$I = \{e \in E(S) | (\exists e^{\circ} \in E(S^{\circ})) e \mathcal{L}e^{\circ}\}, \Lambda = \{f \in E(S) | (\exists f^{\circ} \in E(S^{\circ})) f \mathcal{R}f^{\circ}\}.$$

In view of item (1), \overline{I} is a regular semigroup and $V_{E(S^{\circ})}(x) \neq \emptyset$ for all $x \in \overline{I}$. Denote

$$I^{E(S^{\circ})} = \{ xx^{\circ} | x \in \overline{I}, x^{\circ} \in V_{E(S^{\circ})}(x) \}, \Lambda^{E(S^{\circ})} = \{ x^{\circ}x | x \in \overline{I}, x^{\circ} \in V_{E(S^{\circ})}(x) \}.$$

Then by Lemma 2.7 and Lemma 2.10,

$$I^{E(S^{\circ})} = \{ e \in E(\overline{I}) | (\exists e^{\circ} \in E(S^{\circ})) e \mathcal{L} e^{\circ} \}, \Lambda^{E(S^{\circ})} = \{ f \in E(\overline{I}) | (\exists f^{\circ} \in E(S^{\circ})) f \mathcal{R} f^{\circ} \}.$$

It is easy to see that $I = I^{E(S^{\circ})}$ and $\Lambda^{E(S^{\circ})} = \Lambda \cap \overline{I}$. Hence by Definition 3.1 and Theorem 3.7 (2), we have

$$I^{E(S^{\circ})}E(S^{\circ}) = IE(S^{\circ}) \subseteq I = I^{E(S^{\circ})}, E(S^{\circ})I^{E(S^{\circ})} = E(S^{\circ})I \subseteq E(S) \cap \overline{I} = E(\overline{I})$$

and

$$E(S^{\circ})\Lambda^{E(S^{\circ})} = E(S^{\circ})(\Lambda \cap \bar{I}) \subseteq E(S^{\circ})\Lambda \cap E(S^{\circ})\bar{I} \subseteq \Lambda \cap \bar{I} = \Lambda^{E(S^{\circ})},$$

$$\Lambda^{E(S^{\circ})}E(S^{\circ}) = (\Lambda \cap \bar{I})E(S^{\circ}) \subseteq \Lambda E(S^{\circ}) \cap \bar{I}E(S^{\circ}) \subseteq E(S) \cap \bar{I} = E(\bar{I}).$$

By Lemma 2.2 (2), $E(S^{\circ})$ is an orthodox transversal of \overline{I} . According to Lemma 2.2 (3), the subsemigroup generated by $I^{E(S^{\circ})} = I$ in \overline{I} is a subband of \overline{I} . This implies that \overline{I} itself is a subband of S. By dual arguments, we can obtain a symmetrical result for Λ . \Box

In the end of this section, we give some properties of semi-abundant semigroups with generalized bi-ideal quasi-Ehreshmann transversals, which will be used in the next section. Recall that a subset *T* of a semigroup *S* is called a *generalized bi-ideal* if $TST \subseteq T$.

Lemma 3.11. Let *S* be a semi-abundant semigroup with a strong quasi-Ehreshmann transversal *S*[°] which is also a generalized bi-ideal of *S*. Then I and Λ are subbands of *S*. In this case, $E(S^{\circ})I \subseteq E(S^{\circ})$ and $\Lambda E(S^{\circ}) \subseteq E(S^{\circ})$.

Proof. Let $e, f \in I$. Then, by Lemma 2.7, there exist $e^{\circ}, f^{\circ} \in E(S^{\circ})$ such that $e\mathcal{L}e^{\circ}$ and $f\mathcal{L}f^{\circ}$. Since S° is a generalized bi-ideal of $S, e^{\circ}f = e^{\circ}ff^{\circ} \in S^{\circ}$. By (2) of Theorem 3.7, we have $e^{\circ}f \in E(S)$. This implies that $e^{\circ}f \in E(S^{\circ})$. In virtue of condition (ii) of Definition 3.1, we have

$$ef = e(e^{\circ}f) \in IE(S^{\circ}) \subseteq I.$$

This shows that *I* is a subband of *S*. Dually, Λ is also a subband of *S*.

Now, let $s \in E(S^{\circ})$ and $i \in I$. Then, by Lemma 2.7, $i \mathcal{L}i^{\circ}$ for some $i^{\circ} \in E(S^{\circ})$. Since *I* is a subband and S° is a generalized bi-ideal of *S*, we have

$$si = sii^{\circ} \in I \cap S^{\circ} = E(S^{\circ}).$$

This yields that $E(S^{\circ})I \subseteq E(S^{\circ})$. Dually, $\Lambda E(S^{\circ}) \subseteq E(S^{\circ})$. \Box

Lemma 3.12. Let $x, y \in S^\circ$, $e, g \in I$, $f, h \in \Lambda$ and $e\mathcal{L}x^\dagger$, $f\mathcal{R}x^*$, $g\mathcal{L}y^\dagger$, $h\mathcal{R}y^*$. Then

$$e\mathcal{R}g, x\delta y, f\mathcal{L}h \Leftrightarrow exf = gyh.$$

Proof. Necessity. By hypothesis, we have x = kyl, where $k \in E(y^{\dagger})$ and $l \in E(y^{\ast})$ (Notice that $k, l \in E(S^{\circ})$!). By lemma 2.6, $E(x^{\dagger}) = E(y^{\dagger})$. By Lemma 2.1, we have

е	g, eky†	ek
x [†]	$x^{\dagger}y^{\dagger}$	
$y^{\dagger}x^{\dagger}$	y^{\dagger}	y [†] k
ky†x†	ky†	k

Since $ky^{\dagger} \in E(S^{\circ})$ and $e \in I$, by condition (i) of Definition 3.1, we have $eky^{\dagger} \in I$ whence $eky^{\dagger} = g$. Dually, $y^*lf = h$. Therefore,

$$exf = ekylf = eky^{\mathsf{T}} \cdot y \cdot y^*lf = gyh$$

Sufficiency. Let exf = gyh. Then,

$$(e, x, f), (g, y, h) \in \Omega_{exf} = \Omega_{qyh}.$$

By Lemma 2.8,

$$e\mathcal{R}^*exf = gyh\mathcal{R}^*g, f\mathcal{L}^*exf = gyh\mathcal{L}^*h$$

The fact that $x \delta y$ follows from Theorem 3.4 (1). \Box

Lemma 3.13. The following statements are equivalent:

- (1) S° is a generalized bi-ideal of S;
- (2) $(\forall x, y \in S)(\forall (e, \overline{x}, f) \in \Omega_x)(\forall (g, \overline{y}, h) \in \Omega_y) \quad \overline{x}fg\overline{y} \in \Gamma_{xy};$
- (3) $(\forall f \in \Lambda)(\forall g \in I) \quad fg \in S^{\circ}.$

Proof. (1) \Rightarrow (2). By (1), $\bar{x}fg\bar{y} \in S^{\circ}$. Let $e\mathcal{L}\bar{x}^{\dagger}$ and $h\mathcal{R}\bar{y}^{*}$. Then, for any $(\bar{x}fg\bar{y})^{\dagger}$ and $(\bar{x}fg\bar{y})^{*}$, by Lemma 2.3 and its dual, we have

$$e(\bar{x}fg\bar{y})^{\dagger}\mathcal{L}\bar{x}^{\dagger}(\bar{x}fg\bar{y})^{\dagger} = (\bar{x}fg\bar{y})^{\dagger}, (\bar{x}fg\bar{y})^{*}h\mathcal{R}(\bar{x}fg\bar{y})^{*}\bar{y}^{*} = (\bar{x}fg\bar{y})^{*}.$$

Observe that $xy = e(\bar{x}fg\bar{y})^{\dagger}\bar{x}fg\bar{y}(\bar{x}fg\bar{y})^*h$, it follows that $\bar{x}fg\bar{y} \in \Gamma_{xy}$.

(2) \Rightarrow (3). Let $f \in \Lambda$ and $g \in I$. Then, by Lemma 2.7, there exist $f^{\circ}, g^{\circ} \in E(S^{\circ})$ such that $f\mathcal{R}f^{\circ}$ and $g\mathcal{L}g^{\circ}$. Hence, $(f^{\circ}, f^{\circ}, f) \in \Omega_{f}$ and $(g, g^{\circ}, g^{\circ}) \in \Omega_{g}$. By (2), $fg = f^{\circ}fgg^{\circ} \in \Gamma_{fg}$. Therefore, $fg \in S^{\circ}$.

(3) ⇒ (1). Let $x, z \in S^\circ$, $y \in S$ and $(g, \bar{y}, h) \in \Omega_y$. Then, by (3) we have $xyz = x(\bar{x}^*g)\bar{y}(h\bar{z}^\dagger)z \in S^\circ$. This shows that S° is a generalized bi-ideal of S. \Box

4. A Structure Theorem

In this section, a structure theorem of semi-abundant semigroups with a generalized bi-ideal strong quasi-Ehreshmann transversal is established by using so-called *QSQE-systems* which are defined as follows.

Definition 4.1. Let I and Λ be two bands, S° be a quasi-Ehreshmann semigroup such that

$$E(S^{\circ}) = I \cap \Lambda, E(S^{\circ})I \subseteq E(S^{\circ}), \Lambda E(S^{\circ}) \subseteq E(S^{\circ})$$

and P be a $\Lambda \times I$ -matrix over S°. Then (I, Λ, S°, P) is called a QSQE-system if for all $i, j \in E^\circ, e \in I$ and $f \in \Lambda$,

$$(QSQE) \qquad iP_{f,e} = P_{if,e}, \ P_{f,e}j = P_{f,ej}, \ P_{f,i} = fi, \ P_{j,e} = je.$$

Let (I, Λ, S°, P) be a **QSQE**-system and denote $E^\circ = E(S^\circ)$. Write

$$Q = Q(I, \Lambda, S^{\circ}, P) = \{(R_e, \delta(x), L_f) \in I/\mathcal{R} \times S^{\circ}/\delta \times \Lambda/\mathcal{L} | e\mathcal{L}x^{\dagger}, f\mathcal{R}x^{*} \text{ for some } x^{\dagger}, x^{*} \in E^{\circ}\}.$$

The following result shows that the above set *Q* is well-defined.

Lemma 4.2. Let $(R_e, \delta(x), L_f) \in Q$ and $g \in I, y \in S^\circ, h \in \Lambda$. If $eRg, x\delta y$ and $f\mathcal{L}h$, then there exist $y^\dagger, y^* \in E^\circ$ such that $g\mathcal{L}y^\dagger$ and hRy^* .

Proof. Let $(R_e, \delta(x), L_f) \in Q, g \in I, y \in S^\circ, h \in \Lambda$ and

$$eRg, x\delta y, fLh, eLx^{\dagger}, fRx^{*}$$

for some $x^{\dagger}, x^* \in E^{\circ}$. Then, there exist $i \in E(x^{\dagger}), \lambda \in E(x^*)$ such that $y = ix\lambda$. Let $\alpha = ix^{\dagger}g, \beta = hx^*\lambda$. Since *I* and Λ are bands and $E^{\circ}I \subseteq E^{\circ}, \Lambda E^{\circ} \subseteq E^{\circ}$, we have $\alpha, \beta \in E^{\circ}$. Since $i \in E(x^{\dagger}), e, g \in I$ and $x^{\dagger}\mathcal{L}e\mathcal{R}g$, it follows that e, g, i, x^{\dagger} in the same \mathcal{D} -class of *I*(**This method will be used in the rest of this section frequently**). Hence,

$$g\alpha = gix^{\dagger}g = g.$$

Clearly, $\alpha g = \alpha$. Therefore, $g\mathcal{L}\alpha$. On the other hand, if $k \in E^{\circ}$ and ky = y, then $kix\lambda = ix\lambda$. This implies that

$$kix = kixx^*\lambda x^* = kix\lambda x^* = ix\lambda x^* = ixx^*\lambda x^* = ixx^*$$

Since $x\widetilde{\mathcal{R}}x^{\dagger}$, we have $ix\widetilde{\mathcal{R}}ix^{\dagger}$, whence $kix^{\dagger} = ix^{\dagger}$ by Lemma 2.3, and so $k\alpha = kix^{\dagger}g = ix^{\dagger}g = \alpha$. But $\alpha y = (ix^{\dagger}g)x\lambda = ix\lambda = y$, again by Lemma 2.3, $y\widetilde{\mathcal{R}}\alpha$. Therefore, $g\mathcal{L}\alpha\widetilde{\mathcal{R}}y$. Dually, we have $h\mathcal{R}\beta\widetilde{\mathcal{L}}y$. \Box

Lemma 4.3. Define a multiplication on *Q* by the rule

$$(R_e, \delta(x), L_f)(R_q, \delta(y), L_h) = (R_{ea^+}, \delta(a), L_{a^*h}),$$

where $a = xP_{f,q}y$. Then the following statements are true:

- (1) $(R_{ea^{\dagger}}, \delta(a), L_{a^{*}h}) \in Q$ dose not depend on the choice of a^{*} and a^{\dagger} ;
- (2) the above multiplication dose not depend on the choice of e, x, f and g, y, h;
- (3) *Q* becomes a semigroup with the above multiplication.

Proof. (1) Let $(R_e, \delta(x), L_f), (R_g, \delta(y), L_h) \in Q$ and $e\mathcal{L}x^{\dagger}, h\mathcal{R}y^*$ for some $x^{\dagger}, y^* \in E^{\circ}$. Then, by Lemma 2.3 and its dual, $x^{\dagger}a^{\dagger} = a^{\dagger}$ and $a^*y^* = a^*$. Therefore, $ea^{\dagger}\mathcal{L}x^{\dagger}a^{\dagger} = a^{\dagger}$ and $a^*h\mathcal{R}a^*y^* = a^*$. This implies that $(R_{ea^{\dagger}}, \delta(a), L_{a^*h}) \in Q$. If $a^{\dagger \dagger}, a^{**} \in E^{\circ}$ and $a^{**}\mathcal{L}a\mathcal{R}a^{\dagger \dagger}$, then $a^{\dagger}\mathcal{R}a^{\dagger \dagger}$ and $a^*\mathcal{L}a^{**}$, whence $ea^{\dagger}\mathcal{R}ea^{\dagger \dagger}$ and $a^*h\mathcal{L}a^{**h}$. This proves that $(R_{ea^{\dagger}}, \delta(a), L_{a^*h})$ dose not depend on the choice of a^* and a^{\dagger} .

(2) Let $(R_e, \delta(x), L_f) = (R_k, \delta(z), L_l), (R_g, \delta(y), L_h) = (R_p, \delta(w), L_q) \in Q$ and

$$e\mathcal{L}x^{\dagger}, k\mathcal{L}z^{\dagger}, g\mathcal{L}y^{\dagger}, p\mathcal{L}w^{\dagger}, f\mathcal{R}x^{*}, l\mathcal{R}z^{*}, h\mathcal{L}y^{*}, q\mathcal{L}w^{*}.$$

Then,

$$eRk, x\delta z, f Ll, qRp, y\delta w, hLq.$$

By Lemma 2.6 (1), there exist

$$i \in E(z^{\dagger}) = E(x^{\dagger}), \lambda \in E(z^{*}) = E(x^{*}), j \in E(w^{\dagger}) = E(y^{\dagger}), \mu \in E(w^{*}) = E(y^{*})$$

such that $x = iz\lambda$ and $y = jw\mu$. Let $a = xP_{f,q}y$ and $b = zP_{l,p}w$. Then,

 $\begin{aligned} a &= xP_{f,g}y = iz\lambda P_{f,g}jw\mu = izP_{\lambda f,gj}w\mu \quad ((QSQE), \ \lambda, j \in E^{\circ}) \\ &= izP_{\lambda fz^*l,pw^{\dagger}gj}w\mu \quad (f\mathcal{L}l, g\mathcal{R}p, l\mathcal{R}z^*, p\mathcal{L}w^{\dagger}) \\ &= izz^*\lambda fz^*P_{l,p}w^{\dagger}gjw^{\dagger}w\mu \quad ((QSQE), \lambda fz^*, w^{\dagger}gj \in E^{\circ}, zz^* = z, w^{\dagger}w = w) \\ &= izP_{l,p}w\mu \quad (\lambda \in E(z^*) = E(x^*), f\mathcal{R}x^*, j \in E(w^{\dagger}) = E(y^{\dagger}), g\mathcal{L}y^{\dagger}, zz^* = z, w^{\dagger}w = w) \\ &= (ib^{\dagger})b(b^*\mu). \end{aligned}$

Noticing that $i \in E(z^{\dagger})$ and $z^{\dagger}b = b$, we have $z^{\dagger}b^{\dagger} = b^{\dagger}$ and $ib^{\dagger} \in E(b^{\dagger})$. Dually, $b^{*}\mu \in E(b^{*})$. Thus, $\delta(a) = \delta(b)$. By lemma 2.6 (3), we have $ib^{\dagger}\mathcal{R}a^{\dagger}$, $b^{*}\mu\mathcal{L}a^{*}$ and $E(a^{\dagger}) = E(b^{\dagger})$. Therefore,

$$ea^{\dagger}kb^{\dagger} = kz^{\dagger}ex^{\dagger}a^{\dagger}kb^{\dagger} (e\mathcal{R}k\mathcal{L}z^{\dagger}, x^{\dagger}a^{\dagger} = a^{\dagger})$$

= $kz^{\dagger}a^{\dagger}kb^{\dagger} (E(x^{\dagger}) = E(z^{\dagger}), e\mathcal{L}x^{\dagger})$
= $kz^{\dagger}a^{\dagger}b^{\dagger} (k\mathcal{L}z^{\dagger}, z^{\dagger}b^{\dagger} = b^{\dagger}, a^{\dagger}kb^{\dagger} \in E(a^{\dagger}) = E(b^{\dagger}))$
= $kz^{\dagger}(ib^{\dagger})a^{\dagger}b^{\dagger} = kz^{\dagger}ib^{\dagger} (a^{\dagger}\mathcal{R}ib^{\dagger}, a^{\dagger} \in E(b^{\dagger}))$
= $kz^{\dagger}iz^{\dagger}b^{\dagger} = kz^{\dagger}b^{\dagger} = kb^{\dagger}. (z^{\dagger}b^{\dagger} = b^{\dagger}, i \in E(z^{\dagger}))$

By the above identity and its dual, we have $ea^{\dagger} \mathcal{R} kb^{\dagger}$. Dually, we can obtain $a^{*}h\mathcal{L}b^{*}q$. Hence,

$$(R_{e}, \delta(x), L_{f})(R_{g}, \delta(y), L_{h}) = (R_{ea^{\dagger}}, \delta(a), L_{a^{*}h})$$

$$= (R_{kb^{\dagger}}, \delta(b), L_{b^{*}q}) = (R_{k}, \delta(z), L_{l})(R_{p}, \delta(w), L_{q}).$$
(3) Let $m_{1} = (R_{e}, \delta(x), L_{f}), m_{2} = (R_{g}, \delta(y), L_{h}), m_{3} = (R_{s}, \delta(z), L_{t}) \in Q.$ Then,
 $(m_{1}m_{2})m_{3} = (R_{ea^{\dagger}}, \delta(a), L_{a^{*}h})m_{3} = (R_{ec^{\dagger}}, \delta(c), L_{c^{*}t}),$
 $m_{1}(m_{2}m_{3}) = m_{1}(R_{gb^{\dagger}}, \delta(b), L_{b^{*}t}) = (R_{ed^{\dagger}}, \delta(d), L_{d^{*}t}).$

By (QSQE), we have

$$c = aP_{a^*h,s}z = aa^*P_{h,s}z = aP_{h,s}z = xP_{f,g}yP_{h,s}z = xP_{f,g}b^*b = xP_{f,gb^*}b = d_{h,s}z$$

which implies that $(m_1m_2)m_3 = m_1(m_2m_3)$. \Box

Lemma 4.4. Let $(R_e, \delta(x), L_f) \in Q$. Then $(R_e, \delta(x), L_f) \in E(Q)$ if and only if $xP_{f,e}x = x$.

Proof. Let $(R_e, \delta(x), L_f) \in Q$, $e\mathcal{L}x^{\dagger}$ and $f\mathcal{R}x^*$. If $(R_e, \delta(x), L_f) \in E(Q)$, then

$$(R_e, \delta(x), L_f) = (R_{ea^+}, \delta(a), L_{a^*f}),$$

where $a = xP_{f,e}x$. Hence, there exist $i \in E(x^{\dagger})$ and $\lambda \in E(x^{\ast})$ such that $xP_{f,e}x = ix\lambda$. Thus,

$$xP_{f,e}x = x^{\dagger}xP_{f,e}xx^{*} = x^{\dagger}ix\lambda x^{*} = x^{\dagger}i(x^{\dagger}xx^{*})\lambda x^{*} = (x^{\dagger}ix^{\dagger})x(x^{*}\lambda x^{*}) = x^{\dagger}xx^{*} = x.$$

Conversely, if $x = xP_{f,e}x$, then

$$(R_e, \delta(x), L_f)^2 = (R_{ex^{\dagger}}, \delta(x), L_{x^*f}) = (R_e, \delta(x), L_f) \in E(Q),$$

as required.

Lemma 4.5. Let $(R_e, \delta(x), L_f) \in Q$ and $e\mathcal{L}x^{\dagger}$, $f\mathcal{R}x^*$ for some $x^{\dagger}, x^* \in E^{\circ}$. Then $(R_e, \delta(x^{\dagger}), L_{x^{\dagger}}) \in E(Q)$ and $(R_e, \delta(x), L_f)\widetilde{\mathcal{R}}(R_e, \delta(x^{\dagger}), L_{x^{\dagger}})$.

Proof. Clearly, $(R_e, \delta(x^{\dagger}), L_{x^{\dagger}}) \in Q$. In view of Condition (*QSQE*), we have

$$x^{\dagger}P_{x^{\dagger},e}x^{\dagger} = x^{\dagger}(x^{\dagger}e)x^{\dagger} = x^{\dagger}x^{\dagger}x^{\dagger} = x^{\dagger},$$

whence $(R_e, \delta(x^{\dagger}), L_{x^{\dagger}}) \in E(Q)$ by Lemma 4.4. By similar calculations, we can obtain that

$$(R_e, \delta(x^{\dagger}), L_{x^{\dagger}})(R_e, \delta(x), L_f) = (R_e, \delta(x), L_f).$$

$$\tag{1}$$

Now, let $(R_q, \delta(y), L_h) \in E(Q)$ and

$$(R_g, \delta(y), L_h)(R_e, \delta(x), L_f) = (R_e, \delta(x), L_f).$$

Then $yP_{h,q}y = y$ by Lemma 4.4 and $(R_{qa^{\dagger}}, \delta(a), L_{a^{*}f}) = (R_{e}, \delta(x), L_{f})$, where $a = yP_{h,e}x$. This implies that

$$yP_{h,q} \in E^{\circ}, ga^{\dagger}\mathcal{R}e, a^{*}f\mathcal{L}f, E(x^{\dagger}) = E(a^{\dagger})$$

by Lemma 2.6. Since $e\mathcal{L}x^{\dagger}$ and $E(x^{\dagger}) = E(a^{\dagger})$, we have $a^{\dagger}e = a^{\dagger}ex^{\dagger} = a^{\dagger}x^{\dagger}$. In view of Condition (*QSQE*) and the fact $ga^{\dagger}\mathcal{R}e$, we obtain

$$yP_{h,e}x^{\dagger} = yP_{h,ga^{\dagger}e}x^{\dagger} = yP_{h,ga^{\dagger}x^{\dagger}}x^{\dagger} = (yP_{h,g})a^{\dagger}x^{\dagger} \in E^{\circ}.$$

Since $x\widetilde{\mathcal{R}}x^{\dagger}$ and $\widetilde{\mathcal{R}}$ is a left congruence, we have $a = yP_{h,e}x\widetilde{\mathcal{R}}yP_{h,e}x^{\dagger}$. This yields that $a^{\dagger}\mathcal{R}yP_{h,e}x^{\dagger}$ and $yP_{h,e}x^{\dagger} \in E(a^{\dagger}) = E(x^{\dagger})$ since $yP_{h,e}x^{\dagger} \in E^{\circ}$. So

$$e\mathcal{R}ga^{\dagger}\mathcal{R}gyP_{h,e}x^{\dagger}, \delta(yP_{h,e}x^{\dagger}) = \delta(x^{\dagger}), yP_{h,e}x^{\dagger}\mathcal{L}x^{\dagger}.$$

In view of Lemma 4.3 (1) and the fact $yP_{h,e}x^{\dagger} \in E^{\circ}$, we have

$$(R_g, \delta(y), L_h)(R_e, \delta(x^{\dagger}), L_{x^{\dagger}}) = (R_{gyP_{he}x^{\dagger}}, \delta(yP_{he}x^{\dagger}), L_{yP_{he}x^{\dagger}x^{\dagger}}) = (R_e, \delta(x^{\dagger}), L_{x^{\dagger}}).$$
(2)

According to items (1) and (2), we have $(R_e, \delta(x^{\dagger}), L_{x^{\dagger}}) \mathcal{R}(R_e, \delta(x), L_f)$ by Lemma 2.3.

Lemma 4.6. Let $(R_e, \delta(x), L_f)$ and $(R_g, \delta(y), L_h) \in Q$. Then $(R_e, \delta(x), L_f)\tilde{\mathcal{R}}(R_g, \delta(y), L_h)$ if and only if $e\mathcal{R}g$.

Proof. Now, let $m_1 = (R_e, \delta(x), L_f), n_1 = (R_q, \delta(y), L_h) \in Q$ and

$$e\mathcal{L}x^{\dagger}, g\mathcal{L}y^{\dagger}, m_{1}^{'} = (R_{e}, \delta(x^{\dagger}), L_{x^{\dagger}}), m_{1}^{'} = (R_{g}, \delta(y^{\dagger}), L_{y^{\dagger}}).$$

Then by (QSQE),

$$m_1'n_1' = (R_{eu^{\dagger}}, \delta(u), L_{u^*y^{\dagger}}), u = x^{\dagger}P_{x^{\dagger},g}y^{\dagger} = x^{\dagger}g \in E^{\circ}.$$

If $m_1 \widetilde{\mathcal{R}} n_1$, then by Lemma 4.5, we have $m'_1 \mathcal{R} n'_1$, which is equivalent to $m'_1 n'_1 = n'_1$ and $n'_1 m'_1 = m'_1$. But $m'_1 n'_1 = n'_1$ implies $g\mathcal{R}eu^{\dagger}$ whence eg = g. Dually, $n'_1 m'_1 = m'_1$ implies ge = e. Therefore, $e\mathcal{R}g$. Conversely, if $e\mathcal{R}g$, then by Lemma 2.1, we have

е	g	eu†
x [†]	$x^{\dagger}y^{\dagger} = x^{\dagger}g = u$	u [†]
y†e	y^{\dagger}	•
	<i>u</i> *	

(3)

Hence,

$$m_{1}^{'}n_{1}^{'} = (R_{eu^{\dagger}}, \delta(u), L_{u^{*}y^{\dagger}}) = (R_{e}, \delta(x^{\dagger}y^{\dagger}), L_{y^{\dagger}}) = (R_{g}, \delta(y^{\dagger}), L_{y^{\dagger}}) = n_{1}^{'}.$$

Dually, we have $n'_1m'_1 = m'_1$. Hence, $m'_1\mathcal{R}n'_1$. Again by Lemma 4.5, $m_1\mathcal{R}n_1$.

Lemma 4.7. *Q* is a semi-abundant semigroup and

$$Q^\circ = \{(R_{x^\dagger}, \delta(x), L_{x^*}) \in Q | x \in S^\circ\}$$

is a quasi-Ehreshmann ~*-subsemigroup of Q isomorphic to S*° *such that*

$$\Gamma_{Q^{\circ}}((R_e,\delta(x),L_f))\neq \emptyset$$

for all $(R_e, \delta(x), L_f)$ in Q.

Proof. By Lemma 4.5, each $\widetilde{\mathcal{L}}$ -class and each $\widetilde{\mathcal{R}}$ -class of Q contains idempotents. Let

$$m_1 = (R_e, \delta(x), L_f), m_2 = (R_g, \delta(y), L_h), m_3 = (R_s, \delta(z), L_t) \in Q$$

and $e\mathcal{L}x^{\dagger}$, $g\mathcal{L}y^{\dagger}$, $m_1\tilde{\mathcal{R}}n_1$. By Lemma 4.6, we have $e\mathcal{R}g$. In view of the diagram (3), we have $x^{\dagger}e = x^{\dagger}$ and $x^{\dagger}g = x^{\dagger}y^{\dagger}$. This implies that $x^{\dagger} = x^{\dagger}e\mathcal{R}x^{\dagger}g = x^{\dagger}y^{\dagger}$ whence $zP_{t,e}x^{\dagger}\mathcal{R}zP_{t,e}x^{\dagger}y^{\dagger}$. By (*QSQE*) and the diagram (3),

$$zP_{t,e}x^{\dagger}\mathcal{R}zP_{t,e}x^{\dagger}y^{\dagger}y^{\dagger} = zP_{t,ex^{\dagger}y^{\dagger}}y^{\dagger} = zP_{t,g}y^{\dagger}.$$

On the other hand, since $x\tilde{\mathcal{R}}x^{\dagger}$, we have $zP_{t,e}x\tilde{\mathcal{R}}zP_{t,e}x^{\dagger}$. Similarly, we have $zP_{t,g}y\tilde{\mathcal{R}}zP_{t,g}y^{\dagger}$. Thus, $zP_{t,e}x\tilde{\mathcal{R}}zP_{t,g}y$ and so $(zP_{t,e}x)^{\dagger}\mathcal{R}(zP_{t,g}y)^{\dagger}$. This implies that $s(zP_{t,e}x)^{\dagger}\mathcal{R}s(zP_{t,g}y)^{\dagger}$. By Lemma 4.6, we have $m_3m_1\tilde{\mathcal{R}}m_3m_2$. We have shown that $\tilde{\mathcal{R}}$ is a left congruence. Dually, $\tilde{\mathcal{L}}$ is a right congruence. Therefore, Q is a semi-abundant semigroup.

Now, define

$$\psi: Q^{\circ} \to S^{\circ}, \quad (R_{x^{\dagger}}, \delta(x), L_{x^{*}}) \mapsto x$$

Then, by Lemma 2.6 (3), ψ is bijective. It is also a homomorphism. In fact, by (*QSQE*),

$$(R_{x^{\dagger}}, \delta(x), L_{x^{*}})(R_{y^{\dagger}}, \delta(y), L_{y^{*}}) = (, \delta(xP_{x^{*}, y^{\dagger}}y),) = (, \delta(xx^{*}y^{\dagger}y),) = (, \delta(xy),).$$

Moreover, by Lemma 4.6 and its dual, for each $(R_{x^{\dagger}}, \delta(x), L_{x^{*}}) \in Q^{\circ}$, we have

$$(R_{x^{\dagger}}, \delta(x^{\dagger}), L_{x^{\dagger}}) \mathcal{R}(R_{x^{\dagger}}, \delta(x), L_{x^{*}}) \mathcal{L}(R_{x^{*}}, \delta(x^{*}), L_{x^{*}})$$

and

$$(R_{x^{\dagger}}, \delta(x^{\dagger}), L_{x^{\dagger}}), (R_{x^{*}}, \delta(x^{*}), L_{x^{*}}) \in E(Q^{\circ}).$$

Hence, Q° is a quasi-Ehreshmann ~-subsemigroup of Q.

Let $m = (R_e, \delta(x), L_f) \in Q$ and $e\mathcal{L}x^{\dagger}$, $f\mathcal{R}x^*$. Then $\overline{m} = (R_{x^{\dagger}}, \delta(x), L_{x^*}) \in Q^{\circ}$. By condition (*QSQE*), Lemma 4.5, Lemma 4.6 and their dual, we have

$$(R_{x^{\dagger}},\delta(x^{\dagger}),L_{x^{\dagger}})=\bar{m}^{\dagger}\tilde{\mathcal{R}}\bar{m}\tilde{\mathcal{L}}\bar{m}^{*}=(R_{x^{*}},\delta(x^{*}),L_{x^{*}})$$

and

$$\bar{m}^{\dagger}\mathcal{L}e_{m} = (R_{e}, \delta(x^{\dagger}), L_{x^{\dagger}}) \in E(Q), \quad \bar{m}^{*}\mathcal{R}f_{m} = (R_{x^{*}}, \delta(x^{*}), L_{f}) \in E(Q).$$

It is routine to check that $m = e_m \overline{m} f_m$. This proves that $\Gamma_{Q^\circ}((R_e, \delta(x), L_f)) \neq \emptyset$. \Box

Lemma 4.8. The following statements hold:

- (1) $E(Q^{\circ}) = \{(R_e, \delta(e), L_e) \in Q^{\circ} | e \in E^{\circ}\};$
- (2) $I_{O^{\circ}} = \{(R_q, \delta(h), L_h) \in E(Q) | g \mathcal{L}h \& h \in E^{\circ}\};$
- (3) $\Lambda_{Q^\circ} = \{(R_q, \delta(q), L_h) \in E(Q) | g \mathcal{R}h \& q \in E^\circ\}.$

Proof. (1) Let $(R_{x^{\dagger}}, \delta(x), L_{x^{\star}}) \in E(Q^{\circ})$. By Lemma 4.6 and condition (QSQE),

$$x = xP_{x^*,x^\dagger}x = xx^*x^\intercal x = xx \in E^\circ.$$

Hence,

$$(R_{x^{\dagger}}, \delta(x), L_{x^{*}}) = (R_{x}, \delta(x), L_{x}) \in \{(R_{e}, \delta(e), L_{e}) \in Q^{\circ} | e \in E^{\circ}\}.$$

The reverse inclusion is obvious.

(2) Let $(R_e, \delta(x), L_f) \in I_{Q^\circ}$ and $e\mathcal{L}x^{\dagger}$, $f\mathcal{R}x^*$. Then, by Lemma 4.4, Lemma 4.7 and Lemma 2.7, we have

$$xP_{f,e}x = x, (R_e, \delta(x), L_f)\mathcal{L}(R_i, \delta(i), L_i)$$

for some $(R_i, \delta(i), L_i) \in E(Q^\circ)$ where $i \in E^\circ$. Thus, by the dual of Lemma 4.6, $f \mathcal{L}i$ whence $f = fi \in E^\circ$ since $i \in E^\circ$ and $E^\circ \Lambda \subseteq \Lambda$. By (*QSQE*), $P_{f,e} = fe \in E^\circ I \subseteq E^\circ$. Since $xP_{f,e}x = x$, we have $xP_{f,e}, P_{f,e}x \in E^\circ$. Therefore,

$$x = xP_{f,e}x = (x(fe))((fe)x) \in E^{\circ}E^{\circ} \subseteq E^{\circ}.$$

Moreover, by Lemma 2.1,

Thus,

$$(R_e, \delta(x), L_f) = (R_k, \delta(f), L_f) \in \{(R_q, \delta(h), L_h) \in E(Q) | g \mathcal{L}h \& h \in E^\circ\}$$

Conversely, let $(R_g, \delta(h), L_h) \in E(Q)$ and $g\mathcal{L}h \in E^\circ$. Then, by the dual of Lemma 4.6 and Lemma 4.7, we can obtain

$$(R_h, \delta(h), L_h) \in E(Q^\circ), (R_q, \delta(h), L_h) \mathcal{L}(R_h, \delta(h), L_h).$$

By Lemma 2.7, $(R_g, \delta(h), L_h) \in I_{Q^\circ}$. (3) This is the dual of (2). \Box

Lemma 4.9. *Q*° *is a generalized bi-ideal strong quasi-Ehreshmann transversal of Q.*

Proof. By Lemma 4.7, Lemma 3.13 and the definition of strong quasi-Ehreshmann transversals, it suffices to prove that I_{Q° and Λ_{Q° are subbands of Q and $\Lambda_{Q^\circ}I_{Q^\circ} \subseteq Q^\circ$. For the first part, we only prove the case for I_{Q° , the similar argument holds for Λ_{Q° . By Lemma 4.8, let

$$(R_e, \delta(f), L_f), (R_a, \delta(h), L_h) \in I(Q), e\mathcal{L}f \in E^\circ, q\mathcal{L}h \in E^\circ.$$

By (QSQE),

$$a = fP_{f,q}h = P_{ff,qh} = P_{f,q} = fg \in E^{\circ}.$$

Then by Lemma 4.3 (1) and Lemma 4.8,

$$(R_e, \delta(f), L_f)(R_g, \delta(h), L_h) = (R_{e(fg)}, \delta(fg), L_{(fg)h}) = (R_{eg}, \delta(fg), L_{fg}) \in I_{Q^\circ}$$

Now, let

$$(R_e, \delta(f), L_f) \in I_{Q^\circ}, (R_q, \delta(g), L_h) \in \Lambda_{Q^\circ}$$

and $e\mathcal{L}f \in E^{\circ}$, $h\mathcal{R}g \in E^{\circ}$ by Lemma 4.8. Then,

$$(R_g, \delta(g), L_h)(R_e, \delta(f), L_f) = (R_{gb^{\dagger}}, \delta(b), L_{b^*f}).$$

Since $b = gP_{h,e}f$, we have $gb^{\dagger} = b^{\dagger}$ and $b^{*}f = b^{*}$ by Lemma 2.3 and its dual. Therefore,

$$(R_q, \delta(q), L_h)(R_e, \delta(f), L_f) = (R_{b^{\dagger}}, \delta(b), L_{b^{*}}) \in Q^{\circ},$$

as required. \Box

Now, we can give our main result in this section.

Theorem 4.10. Let (I, Λ, S°, P) be a **QSQE**-system. Then Q is a semi-abundant semigroup with a generalized bi-ideal strong quasi-Ehreshmann transversal isomorphic to S° ; Conversely, every such semigroup can be obtained in this way.

Proof. The direct part follows from Lemma 4.7 and Lemma 4.9. Conversely, let *S* be a semi-abundant semigroup with a generalized bi-ideal strong quasi-Ehreshmann transversal *S*°. Then we define *I* and Λ as in Section 2 and $P_{f,e} = fe \in S^\circ$ for $e \in I$ and $f \in \Lambda$ by Lemma 3.13. Then, (I, Λ, S°, P) is a *QSQE*-system by Lemma 2.7 and Lemma 3.11. By the proof of the direct part, we can construct a semi-abundant semigroup *Q* with a generalized bi-ideal strong quasi-Ehreshmann transversal *Q*° isomorphic to *S*°. Let

$$\varphi: Q \to S, (R_e, \delta(x), L_f) \mapsto exf$$

By Lemma 3.12, φ is well-defined and injective. Let $m \in S$. Then, there exist $e, f \in E(S)$ and $\overline{m} \in S^{\circ}$ such that $(e, \overline{m}, f) \in \Omega_m$. Hence, $(R_e, \delta(\overline{m}), L_f) \in Q$ and

$$\varphi(R_e, \delta(\bar{m}), L_f) = e\bar{m}f = m.$$

That is, φ is surjective. Let $(R_e, \delta(x), L_f), (R_g, \delta(y), L_h) \in Q$. Then,

$$\begin{split} \varphi((R_e, \delta(x), L_f)(R_g, \delta(y), L_h)) &= \varphi((R_{e(xP_{f,g}y)^{\dagger}}, \delta(xP_{f,g}y), L_{(xP_{f,g}y)^{\ast}h})) \\ &= \varphi((R_{e(xfgy)^{\dagger}}, \delta(xfgy), L_{(xfgy)^{\ast}h})) \\ &= e(xfgy)^{\dagger} \cdot xfgy \cdot (xfgy)^{\ast}h \\ &= exfgyh \\ &= \varphi(R_e, \delta(x), L_f) \cdot \varphi(R_g, \delta(y), L_h). \end{split}$$

This implies that φ is indeed an isomorphism from *Q* onto *S*.

Now, we apply our Theorem 4.10 to the class of regular semigroups with a generalized bi-ideal orthodox transversal. The following theorem gives a structure theorem for regular semigroups with generalized bi-ideal orthodox transversals, which substantively is the Theorem 3.4 in Chen [4].

Corollary 4.11. Let (I, Λ, S°, P) be a **QSQE**-system such that S° is an orthodox semigroup. Then Q is a regular semigroup with a generalized bi-ideal orthodox transversal isomorphic to S° . Conversely, every such semigroup can be obtained in this way.

Proof. It follows from Theorem 3.2 and Theorem 4.10. \Box

5. Some Remarks

In this section, we give some remarks on the results obtained in this paper. Let *S* be a semigroup and $x, y \in S$. The Green's *-relations can be defined as follows. That $x\mathcal{R}^*y$ means that ax = bx if and only if ay = by for all $a, b \in S^1$. The relation \mathcal{L}^* can be defined dually. Denote $\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*$. Clearly, \mathcal{L}^* is a right congruence and \mathcal{R}^* is a left congruence. A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains idempotents. An abundant semigroup *S* is *quasi-adequate* if its idempotents form a subsemigroup of *S*. An abundant subsemigroup *U* of an abundant semigroup *S* is called a **-subsemigroup* of *S* if

$$\mathcal{L}^*(U) = \mathcal{L}^*(S) \cap (U \times U), \mathcal{R}^*(U) = \mathcal{R}^*(S) \cap (U \times U).$$

It is well known (and easy to prove) that abundant semigroups are always semi-abundant semigroups and quasi-adequate semigroups are always quasi-Ehresmann semigroups. Moreover, in an abundant semigroup *S*, we have $\mathcal{L}^* = \widetilde{\mathcal{L}}$, $\mathcal{R}^* = \widetilde{\mathcal{R}}$ and $\mathcal{H}^* = \widetilde{\mathcal{H}}$ and so *-subsemigroups of *S* and ~-subsemigroups of *S* are equal. Thus, we have the following remark.

Remark 5.1. *Quasi-Ehresmann transversals of abundant semigroups are generalizations of orthodox transversals of regular semigroups in the range of abundant semigroups.*

On the other hand, Ni [18] introduced *quasi-adequate transversals* of abundant semigroups (with the notations in this paper) as follows: A quasi-adequate *-subsemigroup S° of an abundant semigroup S is called a *quasi-adequate transversal* of S if

(i) $\Gamma_x \neq \emptyset$ for all $x \in S$.

(ii)
$$\Gamma_e \Gamma_s \subseteq \Gamma_{se}$$
 and $\Gamma_s \Gamma_e \subseteq \Gamma_{es}$ for all $e \in E(S)$ and $s \in E(S^\circ)$.

From Ni [18], a multiplicative orthodox transversal of a regular semigroup *S* is always a multiplicative quasi-adequate transversal of *S*. In the following, we give an example to show that, in general, an orthodox transversal S° of a regular semigroup *S* may not be a quasi-adequate transversal of *S* even if S° is also a generalized bi-ideal of *S*.

Example 5.2. Let *S* be an inverse monoid with identity 1 which is not a Clifford semigroup. Then there exist $\alpha \in S$ and $i \in E(S)$ such that $\alpha i \neq i\alpha$. Suppose that $M \equiv \mathcal{M}(S, 2, 2, P)$ is the Rees matrix semigroup over *S*, where the entries of its sandwich matrix $P = (p_{uv})_{2\times 2}$ are

$$p_{11} = p_{12} = p_{21} = 1, p_{22} = \alpha^{-1}$$

Denote $M^{\circ} = \{(1, x, 1) | x \in S\}$. Then M° is an inverse subsemigroup and a generalized bi-ideal of M, and $V_{M^{\circ}}((u, x, v)) = \{(1, x^{-1}, 1)\}$ for all $(u, x, v) \in M$ where x^{-1} is the unique inverse of x in S. For $(u, x, v) \in M$, we denote $(u, x, v)^{\circ} = (1, x^{-1}, 1)$. Now, let $(u_1, x_1, v_1), (u_2, x_2, v_2) \in M$ and

$$\{(u_1, x_1, v_1), (u_2, x_2, v_2)\} \cap M^{\circ} \neq \emptyset.$$

It is easy to check that

$$V_{M^{\circ}}((u_1, x_1, v_1)(u_2, x_2, v_2)) = \{((u_1, x_1, v_1)(u_2, x_2, v_2))^{\circ}\}$$

= $\{(u_2, x_2, v_2)^{\circ}(u_1, x_1, v_1)^{\circ}\} = V_{M^{\circ}}((u_2, x_2, v_2))V_{M^{\circ}}((u_1, x_1, v_1)).$

This implies that M° *is an orthodox transversal of* M*.*

On the other hand, since M is regular and M° is an inverse subsemigroup of M, M is abundant and M° is a quasi-adequate *-subsemigroup of M certainly. Let $(u, x, v) \in M$. Then $(1, x, 1) \in M^\circ$ and

$$(1, x, 1)^{\dagger} = (1, xx^{-1}, 1), (1, x, 1)^{*} = (1, x^{-1}x, 1).$$

It is easy to see that

$$((u, x, v)(u, x, v)^{\circ}, (1, x, 1), (u, x, v)^{\circ}(u, x, v)) \in \Omega_{(u, x, v)}$$

and so $(1, x, 1) \in \Gamma_{(u,x,v)}$. If $(1, y, 1) \in \Gamma_{(u,x,v)}$, then there exist

$$(u_1, z_1, v_1), (u_2, z_2, v_2) \in E(M)$$

such that

$$(u, x, v) = (u_1, z_1, v_1)(1, y, 1)(u_2, z_2, v_2)$$

and

$$(u_1, z_1, v_1) \mathcal{L}(1, y, 1)^{\dagger} = (1, yy^{-1}, 1), (u_2, z_2, v_2) \mathcal{R}(1, y, 1)^* = (1, y^{-1}y, 1)$$

This implies that

$$u_1 = u, v_2 = v, v_1 = u_2 = 1$$

and

$$z_1, z_2 \in E(S), z_1 \mathcal{L} y y^{-1}, z_2 \mathcal{L} y^{-1} y$$

in *S* whence $z_1 = yy^{-1}$ and $z_2 = y^{-1}y$ since *S* is inverse. Thus, we have

$$(u, x, v) = (u_1, z_1, v_1)(1, y, 1)(u_2, z_2, v_2) = (u, yy^{-1}, 1)(1, y, 1)(1, y^{-1}y, v) = (u, y, v)$$

and so (1, y, 1) = (1, x, 1). We have shown that $\Gamma_{(u,x,v)} = \{(1, x, 1)\}$ for all $(u, x, v) \in M$. For $(2, \alpha, 2) \in E(M)$ and $(1, i, 1) \in E(M^\circ)$, we have

$$\Gamma_{(2,\alpha,2)} = \{(1,\alpha,1)\}, \Gamma_{(1,i,1)} = \{(1,i,1)\},\$$

$$\Gamma_{((1,i,1)(2,\alpha,2))} = \Gamma_{(1,i\alpha,1)} = \{(1,i\alpha,1)\}.$$

and

$$\Gamma_{(2,\alpha,2)}\Gamma_{(1,i,1)} = \{(1,\alpha,1)(1,i,1)\} = \{(1,\alpha i,1)\}.$$

Since $\alpha i \neq i\alpha$, it follows that $\Gamma_{(2,\alpha,2)}\Gamma_{(1,i,1)}$ is not contained in $\Gamma_{(1,i,1)(2,\alpha,2)}$. This implies that M° is not a quasi-adequate transversal of M.

The above Example 5.2 implies the following remark.

Remark 5.3. *Quasi-adequate transversals of abundant semigroups are not generalizations of orthodox transversals of regular semigroups in the range of abundant semigroups.*

To explore some relations between quasi-adequate transversals and quasi-Ehresmann transversals of abundant semigroups, we need the following proposition.

Proposition 5.4. Let *S* be an abundant semigroup and S° a generalized bi-ideal quasi-adequate transversal of *S*. Then

$$E(S^{\circ})I \subseteq E(S^{\circ}), IE(S^{\circ}) \subseteq I, E(S^{\circ})\Lambda \subseteq \Lambda, \Lambda E(S^{\circ}) \subseteq E(S^{\circ}),$$

where I and Λ are defined in the statements before Lemma 2.7.

Proof. In fact, let $e \in I$ and $f \in E(S^\circ)$. By Lemma 2.7, there exists $e^\circ \in I$ such that $e\mathcal{L}e^\circ$, and so $e^\circ \in \Gamma_e$ and $e^\circ f \in E(S^\circ)$. Since S° is a generalized bi-ideal of S, we have $fe = fee^\circ \in S^\circ$. Obviously, $f \in \Gamma_f$. By the definition of quasi-adequate transversals, $e^\circ f \in \Gamma_e\Gamma_f \subseteq \Gamma_{fe}$. By Lemma 2.10 and $e^\circ f \in E(S^\circ) \subseteq RegS^\circ$, it follows that $e^\circ f \in V_{S^\circ}(V_{S^\circ}(fe))$. Noticing that $e^\circ f \in E(S^\circ)$, $fe \in S^\circ$ and $RegS^\circ$ is orthodox, we obtain $fe \in E(S^\circ)$. On the other hand, by the above discussions, we can see that $e^\circ f$ and ef are in the same \mathcal{D} -class of $E(S^\circ)$. In view of the fact $e\mathcal{L}e^\circ$, we have $ef\mathcal{L}e^\circ f \in E(S^\circ)$ and

$$(ef)^2 = efef = ee^\circ fee^\circ f = e(e^\circ ffee^\circ f) = ee^\circ f = ef.$$

Again by Lemma 2.7, we have $ef \in I$. Dually, we can prove that $E(S^{\circ})\Lambda \subseteq \Lambda$ and $\Lambda E(S^{\circ}) \subseteq E(S^{\circ})$.

In view of Definition 3.1, Theorem 3.7 and Proposition 5.4, we have the remark below.

Remark 5.5. A generalized bi-ideal quasi-adequate transversal of an abundant semigroup *S* is always a generalized bi-ideal strong quasi-Ehresmann transversal of *S*. The converse is not true by the Example 5.2.

However, up to now we do not know whether a quasi-adequate transversal of an abundant semigroup is a quasi-Ehresmann transversal in general. This would be an interesting problem to be considered in the future research works.

Acknowledgements: The author expresses his profound gratitude to the referees for the valuable comments and suggestions. Thanks also go to Professor Miroslav Ciric for the timely communications.

References

- [1] J. Al-Bara, J. Renshawa, On adequate transversals, Communications in Algebra 37 (2009) 2309–2324.
- [2] J. Al-Bara, J. Renshawa, Adequate transversals of quasi-adequate semigroups, Communications in Algebra 40 (2012) 905–930.
 [3] T. S. Blyth, R. B. McFadden, Regular semigroups with a multiplicative inverse transversal, Proc. Roy. Soc. Edinburgh 92A (1982)
- [5] T. S. Biyar, K. S. Mer adacti, Regular semigroups with a manipleative inverse numbers of the second semigroups with a manipleative inverse numbers of the second second
- [4] J. F. Chen, On regular semigroups with orthodox transversals, Communications in Algebra 27 (1999) 4275–4288.
 [5] J. F. Chen, Abundant semigroups with adequate transversals, Semigroup Forum 60 (2000) 67–79.
- [6] J. F. Chen, Y. Q. Guo, Orthodox transversals of regular semigroups, International Journal of Algebra and Computation 11 (2001) 269–279.
- [7] A. El-Qallali, Abundant semigroups with a multiplicative type A transversal, Semigroup Forum 47 (1993) 327–340.
- [8] A. El-Qallali, J. B. Fountain, V. Gould, Fundamental representations for classes of semigroups containing a band of idempotents, Communications in Algebra 36 (2008) 2998–3031.
- [9] J. B. Fountain, G. M. S. Gomes, V. Gould, Membership of a A ∨ G for classes of finite weakly abundant semigroups, Period. Math. Hungar. 59 (2009) 9–36.

1004

- [10] G. M. S. Gomes, V. Gould, Fundamental semigroups having a band of idempotents, Semigroup Forum 77 (2008) 279–299.
 [11] V. Gould, Restriction and Ehresmann semigroups, Proceedings of the International Conference on Algebra 2010, 265-288, World Sci. Publ., Hackensack, NJ, 2012.
- [12] Y. He, K. P. Shum, Z. P. Wang, Good B-quasi-Ehresmann semigroups, SCIENCE CHINA Mathematics 53 (2010) 1345–1356.
- [13] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [14] X. J. Kong, X. Z. Zhao, A new construction for regular semigroups with quasi-ideal orthodox transversals, J. Aust. Math. Soc. 86 (2009) 177-187.
- [15] X. J. Kong, Y. F. Luo, Regular semigroups with simplistic orthodox transversals, SCIENTIA SINICA Mathematica 41 (2011) 745–757.
- [16] M. V. Lawson, Semigroups and ordered categories I, The reduced case, Journal of Algebra 141 (1991) 422-462.
- [17] E. Nadia, A. El-Qallali, The structure of a class of Q-semigroups, First Conference on Mathematical Sciences, 24–35, Zarqu Priv. Univ., Zarka, 2006.
- [18] X. F. Ni, Abundant semigroups with a multiplicative quasi-adequate transversal, Semigroup Forum 78 (2009) 34–53.